Ver Fonte

[捉药师] 登录退出页面实现

tangyuanwang há 2 semanas atrás
pai
commit
0e54fefe64
14 ficheiros alterados com 6171 adições e 7 exclusões
  1. 11 0
      ext.json
  2. 24 1
      main.js
  3. 1 1
      manifest.json
  4. 24 5
      pages.json
  5. 178 0
      pages/login/index.vue
  6. 338 0
      pages/user/index.vue
  7. 139 0
      pages/user/settings.vue
  8. 32 0
      utils/App.vue
  9. 152 0
      utils/checkaccess.js
  10. 208 0
      utils/color.js
  11. 26 0
      utils/common.js
  12. 4909 0
      utils/decimal.js
  13. 15 0
      utils/ext.js
  14. 114 0
      utils/request.js

+ 11 - 0
ext.json

@@ -0,0 +1,11 @@
+{
+  "extEnable": true,
+  "extAppid": "wx246605ec671bf08d",
+  "directCommit": false,
+  "ext": {
+    "host_url": "https://openwork.dfwy.tech/",
+    "release_host_url": "https://openwork.dfwy.tech/",
+    "app_id": "wx246605ec671bf08d"
+  }
+}
+

+ 24 - 1
main.js

@@ -1,7 +1,14 @@
-
 // #ifndef VUE3
 import Vue from 'vue'
 import App from './App'
+// 全局请求
+import http from './utils/request.js'
+// 精度计算
+import decimal from './utils/decimal.js'
+// 精度计算
+import checkAccess from './utils/checkaccess.js'
+// 获取ext配置
+import ext from './utils/ext.js'
 
 Vue.config.productionTip = false
 
@@ -16,8 +23,24 @@ app.$mount()
 // #ifdef VUE3
 import { createSSRApp } from 'vue'
 import App from './App.vue'
+// 全局请求
+import http from './utils/request.js'
+// 精度计算
+import decimal from './utils/decimal.js'
+// 权限检查
+import checkAccess from './utils/checkaccess.js'
+// 获取ext配置
+import ext from './utils/ext.js'
+
 export function createApp() {
   const app = createSSRApp(App)
+  // 挂载全局属性
+  app.config.globalProperties.$http = http
+  // 挂载全局属性
+  app.config.globalProperties.$decimal = decimal
+  // 挂载全局属性
+  app.config.globalProperties.$checkAccess = checkAccess
+  app.config.globalProperties.$ext = ext
   return {
     app
   }

+ 1 - 1
manifest.json

@@ -50,7 +50,7 @@
     /* 快应用特有相关 */
     "mp-weixin" : {
         /* 小程序特有相关 */
-        "appid" : "",
+        "appid" : "wx246605ec671bf08d",
         "setting" : {
             "urlCheck" : false
         },

+ 24 - 5
pages.json

@@ -1,10 +1,29 @@
 {
-	"pages": [{
-		"path": "pages/index/index",
-		"style": {
-			"navigationBarTitleText": "uni-app"
+	"pages": [
+		{
+			"path": "pages/index/index",
+			"style": {
+				"navigationBarTitleText": "uni-app"
+			}
+		},{
+		  "path": "pages/user/index",
+		  "style": {
+			"navigationBarTitleText": "我的"
+		  }
+		},
+		{
+		  "path": "pages/user/settings",
+		  "style": {
+			"navigationBarTitleText": "设置"
+		  }
+		},
+		{
+		  "path": "pages/login/index",
+		  "style": {
+			"navigationBarTitleText": "登录注册"
+		  }
 		}
-	}],
+	],
 	"globalStyle": {
 		"navigationBarTextStyle": "black",
 		"navigationBarTitleText": "uni-app",

+ 178 - 0
pages/login/index.vue

@@ -0,0 +1,178 @@
+<template>
+  <view>
+    <view class="logo_box">
+      <image src="https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/logo2.jpg" class="logo_image"></image>
+    </view>
+    <view class="login_content">
+      <!-- #ifdef MP-WEIXIN -->
+      <button open-type="getPhoneNumber" @getphonenumber="getPhonenumber" class="get_phone">授权登录</button>
+      <!-- #endif -->
+      <!-- #ifdef H5 -->
+      <button @click="toPhoneLogin" class="get_phone">授权登录</button>
+      <!-- #endif -->
+      <!-- #ifdef MP-TOUTIAO -->
+      <button open-type="getPhoneNumber" @getphonenumber="getPhonenumber" class="get_phone">抖音用户手机号授权登录</button>
+      <!-- <button class="get_phone" style="margin-top: 40rpx; background-color: #fff; color: #333">手机号验证登录</button> -->
+      <!-- #endif -->
+      <button  class="cancel_login" @click="cancelLogin()">取消登录</button>
+      <view class="policy_content">
+        <image
+            class="checkbox"
+            @click="changeAgreePolicy"
+            :src="agreePolicy ? 'https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/checked.png' : 'https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/checkbox.png'"
+        ></image>
+        我已阅读并同意
+        <navigator url="/pages/policy/index" style="color: #e03519">《服务协议》</navigator>
+      </view>
+    </view>
+  </view>
+</template>
+
+<script>
+export default {
+  data() {
+    return {
+      agreePolicy: false,
+    };
+  },
+  onLoad(options) {
+    // 获取页面参数
+    if (options.redirect) {
+      this.redirect = options.redirect;
+      this.activity_id = options.activity_id;
+      this.id = options.id;
+    }
+  },
+  methods: {
+    changeAgreePolicy() {
+      this.agreePolicy = !this.agreePolicy;
+    },
+    cancelLogin(){
+      // 返回上一页
+      uni.navigateBack();
+    },
+    getPhonenumber(re) {
+      console.log(re.detail.errMsg);
+      // // 如果授权失败的话
+      if (re.detail.errMsg != "getPhoneNumber:ok") {
+        uni.showToast({
+          icon: "error",
+          title: "授权失败",
+        });
+        return;
+      }
+      let share_uid = "";
+      share_uid = uni.getStorageSync("share_uid");
+      uni.login({
+        provider: 'weixin',
+        success: (loginRes) => {
+          console.log(loginRes.code);
+          // 登录成功,获取用户code
+          let open_code = loginRes.code;
+          // 授权成功以后,调用登录
+          this.$http.request("api/wechat/phone_number", { code: re.detail.code, share_uid: share_uid, open_code: open_code }, "post").then((re) => {
+            // 成功的话
+            if (re.code == "success") {
+              // 存储登录标识
+              uni.setStorageSync("userLogin", re.data);
+              if (!uni.getStorageSync("shopId")) {
+                uni.setStorageSync("shopId", re.data.shop_id);
+              }
+              // 跳转到页面
+				uni.redirectTo({ url: "/pages/user/index" });
+            } else {
+              uni.showToast({
+                title: re.msg,
+                icon: "none",
+              });
+            }
+          });
+        },
+        fail: (err) => {
+          console.log('uni.login 接口调用失败,无法获取openid', err);
+          uni.showToast({
+            title: '支付失败',
+            icon: 'none'
+          });
+        }
+      });
+    },
+    toPhoneLogin(re) {
+      // 登录效果
+      this.$http.request("api/wechat/phone_number", this.requestParam).then((re) => {
+        // 成功的话
+        if (re.code == "success") {
+          // 存储登录标识
+          uni.setStorageSync("userLogin", re.data);
+          // 跳转到页面
+          uni.switchTab({ url: "/pages/user/index" });
+        } else {
+          uni.showToast({
+            title: re.msg,
+            icon: "none",
+          });
+        }
+      });
+    },
+  },
+};
+</script>
+
+<style lang="less">
+.logo_box {
+  display: block;
+  margin: 0rpx auto;
+  margin-top: 80rpx;
+  .logo_image {
+    width: 320rpx;
+    height: 320rpx;
+    display: block;
+    margin: 0rpx auto;
+  }
+}
+.login_content {
+  padding: 0 40px;
+  .policy_content {
+    margin-top: 40rpx;
+    font-size: 26rpx;
+    display: flex;
+    align-items: center;
+    .checkbox {
+      width: 40rpx;
+      height: 40rpx;
+    }
+  }
+}
+.get_phone {
+  display: block;
+  width: 100%;
+  height: 80rpx;
+  color: #ffffff;
+  font-size: 28rpx;
+  background: green;
+  margin: 0rpx auto;
+  line-height: 80rpx;
+  margin-top: 160rpx;
+  border-radius: 30rpx;
+  border: 0rpx solid #dddddd;
+}
+.get_phone::after {
+  border: 0rpx solid #dddddd;
+}
+.cancel_login{
+  display: block;
+  width: 100%;
+  height: 80rpx;
+  color: #666666;
+  font-size: 28rpx;
+  background: #dddddd;
+  margin: 0rpx auto;
+  line-height: 80rpx;
+  margin-top: 40rpx;
+  border-radius: 30rpx;
+  border: 0rpx solid #dddddd;
+}
+.cancel_login::after {
+  border: 0rpx solid #dddddd;
+}
+</style>

+ 338 - 0
pages/user/index.vue

@@ -0,0 +1,338 @@
+<template>
+  <view>
+    <view class="user_box">
+      <view class="box_left">
+        <navigator url="/pages/user/settings">
+          <image class="user_image" :src="userInfo.userpic"></image>
+        </navigator>
+      </view>
+      <view class="box_center">
+        <view class="user_name" v-if="is_login">{{ userInfo.username }}</view>
+        		<navigator class="user_name" url="/pages/login/index" v-if="!is_login">请登录</navigator>
+        <view class="user_info">{{ userInfo.phone }}</view>
+      </view>
+      <view class="box_right">
+        <navigator url="/pages/user/settings" class="setting_page" v-if="is_login">
+          <image class="setting_icon" src="https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/setting.png"></image>
+        </navigator>
+      </view>
+    </view>
+    <view class="navigator_list">
+      <navigator class="navigator_item" url="/">
+        <view class="navigator_title_vip">VIP展示信息</view>
+      </navigator>
+	  <navigator class="navigator_item" url="/pages/orders/index">
+	    <view class="navigator_title">订单记录</view>
+		<view class="navigator_title_ico">></view>
+	  </navigator>
+	  <navigator class="navigator_item" url="/">
+	    <view class="navigator_title">分享有礼</view>
+		<view class="navigator_title_ico">></view>
+	  </navigator>
+	  <navigator class="navigator_item" url="/">
+	    <view class="navigator_title">邀请有礼</view>
+		<view class="navigator_title_ico">></view>
+	  </navigator>
+    </view>
+    <view class="packet_content" v-if="show_packet">
+      <view class="close_btn" @click="closePacket"> X </view>
+      <image src="https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/red_packet.gif" class="red_packet" @click="_getredpacket" />
+    </view>
+  </view>
+</template>
+
+<script>
+export default {
+  data() {
+    return {
+      userInfo: {
+        username: "请登录",
+        userpic: "https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/doctor.png",
+        phone: "kailin",
+        status: 0,
+        city_id: 0,
+      },
+	  is_login:0,
+      packetList: [],
+      show_packet: false,
+    };
+  },
+  onLoad(param) {
+    // 存储分享标识
+    if (param.share_uid) {
+      uni.setStorageSync("share_uid", param.share_uid);
+      console.log("share_uid", param.share_uid);
+    }
+    // #ifdef MP-WEIXIN
+    //分享按钮
+    uni.showShareMenu({
+      withShareTicket: true,
+      menus: ["shareAppMessage", "shareTimeline"],
+    });
+    // #endif
+  },
+  onShareAppMessage(obj) {
+  // 店铺ID
+  let shopId = uni.getStorageSync("shopId");
+    //获取当前用户信息
+    let userInfo = uni.getStorageSync("userInfo");
+    let param = "?shop_id"+shopId;
+    if (userInfo.uid) {
+      param = "&share_uid=" + userInfo.uid;
+    }
+    // 获取分享信息
+    let shareList = getApp().globalData.shareList;
+    // 获取分享信息
+    let shareObj = {
+      title: "999智控终端平台\n药优惠 得积分 兑豪礼",
+      //path: '/pages/score/lottery',
+      path: "/pages/user/index",
+      imageUrl: "",
+    };
+    // 循环列表
+    for (let i in shareList) {
+      if (shareList[i].pages == "pages/user/index") {
+        shareObj.path = shareList[i].path ? shareList[i].path : shareObj.path;
+        shareObj.title = shareList[i].title ? `999智控终端平台\n${shareList[i].title}` : shareObj.title;
+        shareObj.imageUrl = shareList[i].image_url ? shareList[i].image_url : shareObj.imageUrl;
+      }
+    }
+    if (param) {
+      shareObj.path += param;
+    }
+    // 返回分享信息
+    return shareObj;
+  },
+  onShow() {
+    // 登录提示
+    this.is_login = this.$checkAccess.checkLogin()
+    // 未登录不请求
+    if ( !this.is_login ) {
+    	this.userInfo = {
+    		username: '请登录',
+    		userpic: 'https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/doctor.png',
+    		phone: 'kailin',
+    		status: 0,
+    		city_id: 0,
+    		is_video_vip:0,
+    		amount:0.00,
+    		transfer_amount:0.00
+    	};
+    	return;
+    }
+    // 判断数据
+    this.$http.request("api/custom/get_info").then((callback) => {
+      if (callback.code == "success") {
+        if (!callback.data.userpic) callback.data.userpic = "https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/doctor.png";
+        // 赋值
+        this.userInfo = callback.data;
+        // 存储登录标识
+        uni.setStorageSync("userInfo", callback.data);
+      }
+    });
+    this._getPacketNum();
+  },
+  methods: {
+    _getredpacket() {
+      let url = "/pages/redpacket/list";
+      if (this.packetList.length == 1) {
+        url = `/pages/redpacket/index?packet_id=${this.packetList[0].custom_redpacket_id}`;
+      }
+      uni.navigateTo({
+        url: url,
+      });
+    },
+    _goWithdraw() {
+      uni.navigateTo({
+        url: "/pages/user/withdraw",
+      });
+    },
+    _goBalance() {
+      uni.navigateTo({
+        url: "/pages/balance/index",
+      });
+    },
+    //获取红包数量是否展示红包领取页面
+    _getPacketNum() {
+      this.$http.request("api/redpacket/get_list").then((callback) => {
+        if (callback.code == "success") {
+          this.packetList = callback.data.data || [];
+          if (callback.data.data.length > 0) {
+            this.show_packet = true;
+          }
+        }
+      });
+    },
+    closePacket() {
+      this.show_packet = false;
+    },
+  },
+};
+</script>
+
+<style lang="less">
+.user_box {
+  width: 680rpx;
+  height: 180rpx;
+  overflow: hidden;
+  background: #ffffff;
+  padding: 10rpx 35rpx;
+  .box_left {
+    float: left;
+    display: block;
+    width: 140rpx;
+    height: 140rpx;
+    .user_image {
+      display: block;
+      width: 120rpx;
+      height: 120rpx;
+      border-radius: 50%;
+      margin: 10rpx auto;
+    }
+  }
+  .box_center {
+    float: left;
+    width: 300rpx;
+    height: 140rpx;
+    margin-left: 35rpx;
+    .user_name {
+      font-size: 30rpx;
+      line-height: 80rpx;
+    }
+    .user_info {
+      color: #999999;
+      font-size: 24rpx;
+      line-height: 60rpx;
+    }
+  }
+  .box_right {
+    float: right;
+    width: 140rpx;
+    height: 140rpx;
+    font-size: 20rpx;
+    line-height: 140rpx;
+    .setting_page {
+      width: 140rpx;
+      height: 140rpx;
+      display: block;
+      overflow: hidden;
+      .setting_icon {
+        width: 60rpx;
+        height: 60rpx;
+        display: block;
+        margin: 40rpx auto;
+      }
+    }
+    .company_text {
+      color: #e03519;
+      width: 140rpx;
+      height: 140rpx;
+      font-size: 20rpx;
+      text-align: center;
+      line-height: 140rpx;
+    }
+  }
+}
+.navigator_list {
+  background: #ffffff;
+  border-top: 1rpx solid #eeeeee;
+  .navigator_item {
+	  position: relative;
+	.navigator_title_ico{
+		position: absolute;
+		right: 30rpx;
+		top: 17rpx;
+	}
+    .navigator_title {
+	  width: 100%;
+      display: block;
+      font-size: 30rpx;
+      line-height: 40rpx;
+	  padding: 20rpx 30rpx;
+	  border-bottom: 1rpx solid #eeeeee;
+    }
+	.navigator_title_vip{
+		width: 100%;
+		display: block;
+		font-size: 30rpx;
+		line-height: 40rpx;
+		padding: 30rpx 60rpx;
+		border-bottom: 1rpx solid #eeeeee;
+		font-size: 30rpx;
+	}
+  }
+}
+
+.alter_info {
+  display: block;
+  color: #e03519;
+  font-size: 20rpx;
+  overflow: hidden;
+  margin: 20rpx auto;
+  background: #ffffff;
+  line-height: 40rpx;
+  padding: 35rpx 35rpx;
+}
+.balance_content {
+  margin: 20rpx;
+  padding: 35rpx;
+  background-color: #fff;
+  box-sizing: border-box;
+  .balance_content_main {
+    display: flex;
+    justify-content: space-between;
+    align-items: center;
+    margin-bottom: 36rpx;
+    .price_content {
+      display: flex;
+      flex-direction: column;
+      > .title {
+        font-size: 24rpx;
+        margin-bottom: 15rpx;
+      }
+    }
+    .withdraw_btn {
+      color: #ffffff;
+      background-color: #169bd5;
+      border-radius: 60rpx;
+      padding: 10rpx 20rpx;
+      width: 90rpx;
+      text-align: center;
+      line-height: 40rpx;
+    }
+  }
+  .balance_content_detail {
+    display: flex;
+    justify-content: space-between;
+    align-items: center;
+    border-top: 2rpx solid #f3f3f3;
+    font-size: 24rpx;
+    padding-top: 18rpx;
+  }
+}
+.packet_content {
+  position: absolute;
+  right: 0;
+  bottom: 15%;
+  width: 160rpx;
+  height: 160rpx;
+  .red_packet {
+    width: 100%;
+    height: 100%;
+  }
+  .close_btn {
+    width: 40rpx;
+    height: 40rpx;
+    font-size: 24rpx;
+    line-height: 40rpx;
+    border-radius: 50%;
+    border: 1rpx solid #ddd;
+    display: flex;
+    align-items: center;
+    justify-content: center;
+    position: absolute;
+    top: 5rpx;
+    left: 0;
+  }
+}
+</style>

+ 139 - 0
pages/user/settings.vue

@@ -0,0 +1,139 @@
+<template>
+  <view>
+    <view class="user_box">
+      <view class="box_left">
+        <image class="user_image" :src="userInfo.userpic"></image>
+      </view>
+      <view class="box_center">
+        <view class="user_name">{{ userInfo.username }}</view>
+        <view class="user_info">{{ userInfo.phone }}</view>
+      </view>
+      <view class="box_right"> </view>
+    </view>
+    <view class="setting_list">
+    </view>
+    <view class="setting_list">
+      <view class="setting_item" @click="outLogin()">
+        <text class="setting_title">退出登录</text>
+        <view class="setting_icon">&gt; </view>
+      </view>
+    </view>
+  </view>
+</template>
+
+<script>
+export default {
+  data() {
+    return {
+      userInfo: {
+        username: "",
+        userpic: "",
+        phone: "",
+        status: 0,
+        company_status: 0,
+      },
+    };
+  },
+  onLoad() {
+    let userInfo = uni.getStorageSync("userInfo");
+    this.userInfo = userInfo;
+    if (!this.userInfo.userpic) this.userInfo.userpic = "https://kailin-mp.oss-cn-shenzhen.aliyuncs.com/static/icon/doctor.png";
+  },
+  onShow() {},
+  methods: {
+    outLogin() {
+      uni.showModal({
+        title: "确认退出登录?",
+        success(re) {
+          if (re.confirm) {
+            // 清空登录标识
+            uni.setStorageSync("userLogin", null);
+            // 清空用户信息
+            uni.setStorageSync("userInfo", null);
+            // 跳转到登录页
+            uni.redirectTo({
+              url: "/pages/login/index",
+            });
+          }
+        },
+      });
+    },
+  },
+};
+</script>
+
+<style lang="less">
+.user_box {
+  width: 680rpx;
+  height: 180rpx;
+  overflow: hidden;
+  background: #ffffff;
+  padding: 10rpx 35rpx;
+  .box_left {
+    float: left;
+    display: block;
+    width: 140rpx;
+    height: 140rpx;
+    .user_image {
+      display: block;
+      width: 120rpx;
+      height: 120rpx;
+      border-radius: 50%;
+      margin: 10rpx auto;
+    }
+  }
+  .box_center {
+    float: left;
+    width: 300rpx;
+    height: 140rpx;
+    margin-left: 35rpx;
+    .user_name {
+      font-size: 30rpx;
+      line-height: 80rpx;
+    }
+    .user_info {
+      color: #999999;
+      font-size: 24rpx;
+      line-height: 60rpx;
+    }
+  }
+  .box_right {
+    float: right;
+    width: 140rpx;
+    height: 140rpx;
+    font-size: 20rpx;
+    .setting_page {
+      width: 140rpx;
+      height: 140rpx;
+      display: block;
+      overflow: hidden;
+      .setting_icon {
+        width: 60rpx;
+        height: 60rpx;
+        display: block;
+        margin: 40rpx auto;
+      }
+    }
+  }
+}
+.setting_list {
+  overflow: hidden;
+  margin: 10rpx auto;
+  padding: 0rpx 0rpx;
+  .setting_item {
+    height: 80rpx;
+    display: block;
+    font-size: 26rpx;
+    line-height: 80rpx;
+    margin: 10rpx auto;
+    padding: 0rpx 35rpx;
+    background: #ffffff;
+    .setting_title {
+    }
+    .setting_icon {
+      float: right;
+      color: #999999;
+    }
+  }
+}
+</style>

+ 32 - 0
utils/App.vue

@@ -0,0 +1,32 @@
+<script>
+	export default {
+		onLaunch: function() {
+			console.warn('当前组件仅支持 uni_modules 目录结构 ,请升级 HBuilderX 到 3.1.0 版本以上!')
+			console.log('App Launch')
+		},
+		onShow: function() {
+			console.log('App Show')
+		},
+		onHide: function() {
+			console.log('App Hide')
+		}
+	}
+</script>
+
+<style lang="scss">
+	/*每个页面公共css */
+	@import '@/uni_modules/uni-scss/index.scss';
+	/* #ifndef APP-NVUE */
+	@import '@/static/customicons.css';
+	// 设置整个项目的背景色
+	page {
+		background-color: #f5f5f5;
+	}
+
+	/* #endif */
+	.example-info {
+		font-size: 14px;
+		color: #333;
+		padding: 10px;
+	}
+</style>

+ 152 - 0
utils/checkaccess.js

@@ -0,0 +1,152 @@
+// 检查登录
+const checkLogin = () => {
+  // 获取登录标识
+  let userLogin = uni.getStorageSync("userLogin");
+  // 如果不存在的话
+  if (!userLogin || !userLogin.authcode || userLogin.expires_in <= Math.floor(new Date().getTime() / 1000)) {
+    // 未登录
+    return false;
+  }
+  // 登录成功
+  return true;
+};
+
+// 登录提示
+const alterLogin = () => {
+  // 获取登录标识
+  let userLogin = uni.getStorageSync("userLogin");
+  // 如果不存在的话
+  if (!userLogin || !userLogin.authcode || userLogin.expires_in <= Math.floor(new Date().getTime() / 1000)) {
+    // 未登录
+    uni.showModal({
+      title: "请登录",
+      success(res) {
+        if (res.confirm) {
+          // 用户点击确定按钮
+          uni.navigateTo({
+            url: "/pages/login/index",
+          });
+        }
+      },
+    });
+    return false;
+  }
+  // 登录成功
+  return true;
+};
+
+const onlyCheckAccess = () => {
+  // 获取登录标识
+  let userLogin = uni.getStorageSync("userLogin");
+  // 如果不存在的话
+  if (!userLogin || !userLogin.authcode || userLogin.expires_in <= Math.floor(new Date().getTime() / 1000)) {
+    // 未登录
+    return false;
+  }
+  // 登录成功
+  return true;
+};
+
+// 检查企业资质
+const checkShowPrice = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果未登录,不显示
+  if (!userInfo) return false;
+  // 未加好友不显示
+  if (!userInfo.show_price) return false;
+  // 登录成功
+  return true;
+};
+
+// 检查城市ID
+const getCity = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo) return "";
+  // 资质ID不存在的话
+  if (!userInfo.city_id) return "";
+  // 登录成功
+  return userInfo.city_id;
+};
+
+// 检查城市ID
+const isManager = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo) return false;
+  // 资质ID不存在的话
+  if (!userInfo.is_manager) return false;
+  // 登录成功
+  return true;
+};
+
+// 是否要求填写城市
+const alertCity = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo || !userInfo.city_id) {
+    // 未登录
+    uni.showModal({
+      title: "请先选择您的城市",
+      success(res) {
+        if (res.confirm) {
+          // 用户点击确定按钮
+          uni.navigateTo({
+            url: "/pages/user/info",
+          });
+        }
+      },
+    });
+    return false;
+  }
+  // 登录成功
+  return true;
+};
+
+// 检查客服推送码
+const getFollowQrcode = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo) return "";
+  // 未添加好友
+  if (!userInfo.follow_qrcode) return "";
+  // 返回结果
+  return userInfo.follow_qrcode;
+};
+
+// 检查客服推送码
+const getFollowLinkUrl = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo) return "";
+  // 未添加好友
+  if (!userInfo.follow_linkurl) return "";
+  // 返回结果
+  return userInfo.follow_linkurl;
+};
+
+const getHasFollow = () => {
+  // 获取登录标识
+  let userInfo = uni.getStorageSync("userInfo");
+  // 如果不存在的话
+  if (!userInfo) return false;
+  return userInfo.have_follow == 1;
+};
+
+export default {
+  checkLogin: checkLogin,
+  alterLogin: alterLogin,
+  checkShowPrice: checkShowPrice,
+  alertCity: alertCity,
+  getFollowQrcode: getFollowQrcode,
+  getFollowLinkUrl: getFollowLinkUrl,
+  getCity: getCity,
+  isManager: isManager,
+  getHasFollow: getHasFollow,
+};

+ 208 - 0
utils/color.js

@@ -0,0 +1,208 @@
+const themeColor = {};
+
+/**
+ * 单例模式确保全局只有一个Color实例
+ * @param {Object} themeColor 主题颜色
+ */
+const Color = (function () {
+  let instance;
+  return function (themeColor) {
+    if (instance) return instance;
+    return new ColorConstructor(themeColor);
+  };
+})();
+
+class ColorConstructor {
+  // 定义私有属性,用于存储主题颜色和颜色变化程度
+  #themeColor; // 主题颜色
+  #changeSpan; // 颜色变化程度
+  #themeKey; // 主题颜色key
+  #subThemeKey; // 辅助颜色key
+  #theme; // 主题
+  constructor({
+    themeColor,
+    changeSpan,
+    themeKey,
+    theme = "light",
+    subThemeKey,
+  }) {
+    // 如果没有传入主题颜色,则抛出错误
+    if (!themeColor) throw new Error(`主题颜色是必须的`);
+    // 设置主题
+    this.setTheme(theme);
+    // 设置主题颜色
+    this.setThemeColor({
+      themeColor,
+      changeSpan,
+      themeKey,
+      theme,
+      subThemeKey,
+    });
+  }
+
+  // 判断颜色是否为16进制颜色
+  isHEX(color) {
+    // 如果颜色长度不为7或4,则返回false
+    if (color.length !== 7 && color.length !== 4) return false;
+    // 定义正则表达式,用于匹配16进制颜色
+    const hexreg = /^\#?([0-9A-Fa-f]{3}|[0-9A-Fa-f]{6})$/;
+    // 返回正则表达式匹配结果
+    return hexreg.test(color);
+  }
+  isRGB(color) {
+    const rgbreg = /^rgb\((\d{1,3}),\s*(\d{1,3}),\s*(\d{1,3})\)$/;
+    return rgbreg.test(color);
+  }
+
+  // 格式化十六进制颜色值
+  formatHex(hex) {
+    // 如果长度不等于4,则返回原值
+    if (hex.length !== 4) return hex;
+    // 返回格式化后的十六进制颜色值
+    return `#${hex[1]}${hex[1]}${hex[2]}${hex[2]}${hex[3]}${hex[3]}`;
+  }
+
+  // 参数归一化颜色
+  normalizeColor(color) {
+    let colorMap = {};
+    if (typeof color === "string") {
+      if (!this.isHEX(color) && !this.isRGB(color)) {
+        throw new Error(`颜色值${color}格式不正确`);
+      }
+      colorMap[this.#themeKey] = color;
+    } else if (Object.prototype.toString.call(color) !== "[object Object]") {
+      throw new Error(`颜色值${color}格式不正确 必须是字符串或者对象的形式`);
+    } else {
+      colorMap = color;
+    }
+    return colorMap;
+  }
+
+  // 设置主题颜色
+  setThemeColor({
+    themeColor,
+    changeSpan = 0.2,
+    themeKey = "primary",
+    subThemeKey = "success",
+    onSuccess,
+  }) {
+    // 将传入的颜色赋值给私有属性#themeColor
+    const newTheme = this.normalizeColor(themeColor);
+    this.#changeSpan = changeSpan;
+    this.#themeColor = this.#setThemeMap(newTheme, this.#changeSpan);
+    this.#themeKey = themeKey;
+    this.#subThemeKey = subThemeKey;
+    onSuccess?.(this.#themeColor);
+  }
+
+  // 设置主题
+  setTheme(theme) {
+    if (theme !== "dark" && theme !== "light")
+      throw new Error(`主题必须是dark或者light`);
+    // 将传入的主题赋值给私有属性#theme
+    this.#theme = theme;
+    // 调用私有方法#setThemeMap,传入私有属性#themeColor和#changeSpan,将返回值赋值给私有属性#themeColor
+    this.#themeColor = this.#setThemeMap(this.#themeColor, this.#changeSpan);
+  }
+
+  // 获取主题颜色
+  get themeColor() {
+    // 返回主题颜色
+    return this.#themeColor[this.#themeKey];
+  }
+
+  // 获取子主题颜色
+  get subThemeColor() {
+    // 返回主题颜色中子主题键对应的颜色值
+    return this.#themeColor[this.#subThemeKey];
+  }
+
+  // 获取变淡以及加深的颜色
+  #setThemeMap(themeColor, changeSpan) {
+    const newTheme = { ...themeColor };
+    const changeList = new Array(5)
+      .fill(0)
+      .map((_, index) => index * changeSpan)
+      .filter((item) => item > 0 && item < 1);
+    for (const key in newTheme) {
+      changeList.forEach((item, index) => {
+        newTheme[`${key}-light-${index + 1}`] = this.getLightColor(
+          newTheme[key],
+          item
+        );
+        newTheme[`${key}-dark-${index + 1}`] = this.getDarkColor(
+          newTheme[key],
+          item
+        );
+      });
+    }
+    return newTheme;
+  }
+
+  // 获取主题颜色 1-4 或者 空
+  getThemeColor(index, themeKey = this.#themeKey) {
+    // 打印深色主题颜色
+    const key = `${themeKey}${!!index ? `-${this.#theme}-${index}` : ""}`;
+    return this.#themeColor[key];
+  }
+  //16进制颜色转GRB颜色
+  HexToRgb(str) {
+    if (!this.isHEX(str)) {
+      return;
+    }
+    str = this.formatHex(str);
+    let hexs = null;
+    str = str.replace("#", ""); // 去掉#
+    hexs = str.match(/../g); // 切割成数组 409EFF => ['40','9E','FF']
+    // 将切割的色值转换为16进制
+    for (let i = 0; i < hexs.length; i++) hexs[i] = parseInt(hexs[i], 16);
+    return hexs;
+  }
+  //GRB颜色转16进制颜色
+  rgbaToHex(rgba) {
+    let hex = "#";
+    for (const i of rgba) {
+      hex += i.toString(16).padStart(2, "0");
+    }
+    return hex;
+  }
+
+  // 计算颜色
+  computedColor(color, fn) {
+    // 将颜色转换为rgb格式
+    let rgb = color;
+    if (this.isHEX(color)) {
+      rgb = this.HexToRgb(color);
+    }
+    // 创建一个空数组,用于存储转换后的颜色值
+    let sColorChange = [];
+    // 遍历rgb数组
+    for (var i = 0; i < rgb.length; i++) {
+      // 对每个颜色值进行转换
+      let val = fn(rgb[i]);
+      // 如果转换后的值小于0,则将其设置为0
+      if (val < 0) {
+        val = 0;
+      }
+      // 如果转换后的值大于255,则将其设置为255
+      if (val > 255) {
+        val = 255;
+      }
+      // 将转换后的值添加到数组中
+      sColorChange.push(val);
+    }
+    // 将转换后的rgb数组转换为hex格式
+    return this.rgbaToHex(sColorChange);
+  }
+
+  //得到16进制颜色值为color的加深颜色值,level为加深的程度,限0-1之间
+  getDarkColor(color, level) {
+    return this.computedColor(color, (item) => item - Math.floor(item * level));
+  }
+  //得到16进制颜色值为color的减淡颜色值,level为加深的程度,限0-1之间
+  getLightColor(color, level) {
+    return this.computedColor(color, (item) => item + Math.floor(item * level));
+  }
+}
+
+export default new Color({ themeColor });

+ 26 - 0
utils/common.js

@@ -0,0 +1,26 @@
+// 防抖函数
+function debounce(func, wait) {
+  let timeout;
+  return function (...args) {
+    clearTimeout(timeout);
+    timeout = setTimeout(() => func.apply(this, args), wait);
+  };
+}
+
+/**
+ * 将时间戳转换为字符串格式 YYYY-MM-DD HH:mm:ss
+ * @param {number} timestamp - 时间戳(毫秒)
+ * @returns {string} 格式化后的日期字符串
+ */
+function timestampToString(timestamp) {
+  const date = new Date(timestamp * 1000);
+  const year = date.getFullYear();
+  const month = String(date.getMonth() + 1).padStart(2, "0");
+  const day = String(date.getDate()).padStart(2, "0");
+  const hours = String(date.getHours()).padStart(2, "0");
+  const minutes = String(date.getMinutes()).padStart(2, "0");
+  const seconds = String(date.getSeconds()).padStart(2, "0");
+  return `${year}-${month}-${day} ${hours}:${minutes}:${seconds}`;
+}
+
+export default { debounce, timestampToString };

+ 4909 - 0
utils/decimal.js

@@ -0,0 +1,4909 @@
+/*!
+ *  decimal.js v10.4.3
+ *  An arbitrary-precision Decimal type for JavaScript.
+ *  https://github.com/MikeMcl/decimal.js
+ *  Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
+ *  MIT Licence
+ */
+
+
+// -----------------------------------  EDITABLE DEFAULTS  ------------------------------------ //
+
+
+	// The maximum exponent magnitude.
+	// The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`.
+	var EXP_LIMIT = 9e15, // 0 to 9e15
+
+	// The limit on the value of `precision`, and on the value of the first argument to
+	// `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.
+	MAX_DIGITS = 1e9, // 0 to 1e9
+
+	// Base conversion alphabet.
+	NUMERALS = '0123456789abcdef',
+
+	// The natural logarithm of 10 (1025 digits).
+	LN10 =
+	'2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058',
+
+	// Pi (1025 digits).
+	PI =
+	'3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789',
+
+
+	// The initial configuration properties of the Decimal constructor.
+	DEFAULTS = {
+
+		// These values must be integers within the stated ranges (inclusive).
+		// Most of these values can be changed at run-time using the `Decimal.config` method.
+
+		// The maximum number of significant digits of the result of a calculation or base conversion.
+		// E.g. `Decimal.config({ precision: 20 });`
+		precision: 20, // 1 to MAX_DIGITS
+
+		// The rounding mode used when rounding to `precision`.
+		//
+		// ROUND_UP         0 Away from zero.
+		// ROUND_DOWN       1 Towards zero.
+		// ROUND_CEIL       2 Towards +Infinity.
+		// ROUND_FLOOR      3 Towards -Infinity.
+		// ROUND_HALF_UP    4 Towards nearest neighbour. If equidistant, up.
+		// ROUND_HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
+		// ROUND_HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
+		// ROUND_HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
+		// ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
+		//
+		// E.g.
+		// `Decimal.rounding = 4;`
+		// `Decimal.rounding = Decimal.ROUND_HALF_UP;`
+		rounding: 4, // 0 to 8
+
+		// The modulo mode used when calculating the modulus: a mod n.
+		// The quotient (q = a / n) is calculated according to the corresponding rounding mode.
+		// The remainder (r) is calculated as: r = a - n * q.
+		//
+		// UP         0 The remainder is positive if the dividend is negative, else is negative.
+		// DOWN       1 The remainder has the same sign as the dividend (JavaScript %).
+		// FLOOR      3 The remainder has the same sign as the divisor (Python %).
+		// HALF_EVEN  6 The IEEE 754 remainder function.
+		// EUCLID     9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive.
+		//
+		// Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian
+		// division (9) are commonly used for the modulus operation. The other rounding modes can also
+		// be used, but they may not give useful results.
+		modulo: 1, // 0 to 9
+
+		// The exponent value at and beneath which `toString` returns exponential notation.
+		// JavaScript numbers: -7
+		toExpNeg: -7, // 0 to -EXP_LIMIT
+
+		// The exponent value at and above which `toString` returns exponential notation.
+		// JavaScript numbers: 21
+		toExpPos: 21, // 0 to EXP_LIMIT
+
+		// The minimum exponent value, beneath which underflow to zero occurs.
+		// JavaScript numbers: -324  (5e-324)
+		minE: -EXP_LIMIT, // -1 to -EXP_LIMIT
+
+		// The maximum exponent value, above which overflow to Infinity occurs.
+		// JavaScript numbers: 308  (1.7976931348623157e+308)
+		maxE: EXP_LIMIT, // 1 to EXP_LIMIT
+
+		// Whether to use cryptographically-secure random number generation, if available.
+		crypto: false // true/false
+	},
+
+
+	// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //
+
+
+	Decimal, inexact, noConflict, quadrant,
+	external = true,
+
+	decimalError = '[DecimalError] ',
+	invalidArgument = decimalError + 'Invalid argument: ',
+	precisionLimitExceeded = decimalError + 'Precision limit exceeded',
+	cryptoUnavailable = decimalError + 'crypto unavailable',
+	tag = '[object Decimal]',
+
+	mathfloor = Math.floor,
+	mathpow = Math.pow,
+
+	isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i,
+	isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i,
+	isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i,
+	isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
+
+	BASE = 1e7,
+	LOG_BASE = 7,
+	MAX_SAFE_INTEGER = 9007199254740991,
+
+	LN10_PRECISION = LN10.length - 1,
+	PI_PRECISION = PI.length - 1,
+
+	// Decimal.prototype object
+	P = {
+		toStringTag: tag
+	};
+
+
+// Decimal prototype methods
+
+
+/*
+ *  absoluteValue             abs
+ *  ceil
+ *  clampedTo                 clamp
+ *  comparedTo                cmp
+ *  cosine                    cos
+ *  cubeRoot                  cbrt
+ *  decimalPlaces             dp
+ *  dividedBy                 div
+ *  dividedToIntegerBy        divToInt
+ *  equals                    eq
+ *  floor
+ *  greaterThan               gt
+ *  greaterThanOrEqualTo      gte
+ *  hyperbolicCosine          cosh
+ *  hyperbolicSine            sinh
+ *  hyperbolicTangent         tanh
+ *  inverseCosine             acos
+ *  inverseHyperbolicCosine   acosh
+ *  inverseHyperbolicSine     asinh
+ *  inverseHyperbolicTangent  atanh
+ *  inverseSine               asin
+ *  inverseTangent            atan
+ *  isFinite
+ *  isInteger                 isInt
+ *  isNaN
+ *  isNegative                isNeg
+ *  isPositive                isPos
+ *  isZero
+ *  lessThan                  lt
+ *  lessThanOrEqualTo         lte
+ *  logarithm                 log
+ *  [maximum]                 [max]
+ *  [minimum]                 [min]
+ *  minus                     sub
+ *  modulo                    mod
+ *  naturalExponential        exp
+ *  naturalLogarithm          ln
+ *  negated                   neg
+ *  plus                      add
+ *  precision                 sd
+ *  round
+ *  sine                      sin
+ *  squareRoot                sqrt
+ *  tangent                   tan
+ *  times                     mul
+ *  toBinary
+ *  toDecimalPlaces           toDP
+ *  toExponential
+ *  toFixed
+ *  toFraction
+ *  toHexadecimal             toHex
+ *  toNearest
+ *  toNumber
+ *  toOctal
+ *  toPower                   pow
+ *  toPrecision
+ *  toSignificantDigits       toSD
+ *  toString
+ *  truncated                 trunc
+ *  valueOf                   toJSON
+ */
+
+
+/*
+ * Return a new Decimal whose value is the absolute value of this Decimal.
+ *
+ */
+P.absoluteValue = P.abs = function() {
+	var x = new this.constructor(this);
+	if (x.s < 0) x.s = 1;
+	return finalise(x);
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the
+ * direction of positive Infinity.
+ *
+ */
+P.ceil = function() {
+	return finalise(new this.constructor(this), this.e + 1, 2);
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal clamped to the range
+ * delineated by `min` and `max`.
+ *
+ * min {number|string|Decimal}
+ * max {number|string|Decimal}
+ *
+ */
+P.clampedTo = P.clamp = function(min, max) {
+	var k,
+		x = this,
+		Ctor = x.constructor;
+	min = new Ctor(min);
+	max = new Ctor(max);
+	if (!min.s || !max.s) return new Ctor(NaN);
+	if (min.gt(max)) throw Error(invalidArgument + max);
+	k = x.cmp(min);
+	return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x);
+};
+
+
+/*
+ * Return
+ *   1    if the value of this Decimal is greater than the value of `y`,
+ *  -1    if the value of this Decimal is less than the value of `y`,
+ *   0    if they have the same value,
+ *   NaN  if the value of either Decimal is NaN.
+ *
+ */
+P.comparedTo = P.cmp = function(y) {
+	var i, j, xdL, ydL,
+		x = this,
+		xd = x.d,
+		yd = (y = new x.constructor(y)).d,
+		xs = x.s,
+		ys = y.s;
+
+	// Either NaN or ±Infinity?
+	if (!xd || !yd) {
+		return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;
+	}
+
+	// Either zero?
+	if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0;
+
+	// Signs differ?
+	if (xs !== ys) return xs;
+
+	// Compare exponents.
+	if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1;
+
+	xdL = xd.length;
+	ydL = yd.length;
+
+	// Compare digit by digit.
+	for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {
+		if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;
+	}
+
+	// Compare lengths.
+	return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;
+};
+
+
+/*
+ * Return a new Decimal whose value is the cosine of the value in radians of this Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-1, 1]
+ *
+ * cos(0)         = 1
+ * cos(-0)        = 1
+ * cos(Infinity)  = NaN
+ * cos(-Infinity) = NaN
+ * cos(NaN)       = NaN
+ *
+ */
+P.cosine = P.cos = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.d) return new Ctor(NaN);
+
+	// cos(0) = cos(-0) = 1
+	if (!x.d[0]) return new Ctor(1);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
+	Ctor.rounding = 1;
+
+	x = cosine(Ctor, toLessThanHalfPi(Ctor, x));
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);
+};
+
+
+/*
+ *
+ * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ *  cbrt(0)  =  0
+ *  cbrt(-0) = -0
+ *  cbrt(1)  =  1
+ *  cbrt(-1) = -1
+ *  cbrt(N)  =  N
+ *  cbrt(-I) = -I
+ *  cbrt(I)  =  I
+ *
+ * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3))
+ *
+ */
+P.cubeRoot = P.cbrt = function() {
+	var e, m, n, r, rep, s, sd, t, t3, t3plusx,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite() || x.isZero()) return new Ctor(x);
+	external = false;
+
+	// Initial estimate.
+	s = x.s * mathpow(x.s * x, 1 / 3);
+
+	// Math.cbrt underflow/overflow?
+	// Pass x to Math.pow as integer, then adjust the exponent of the result.
+	if (!s || Math.abs(s) == 1 / 0) {
+		n = digitsToString(x.d);
+		e = x.e;
+
+		// Adjust n exponent so it is a multiple of 3 away from x exponent.
+		if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00');
+		s = mathpow(n, 1 / 3);
+
+		// Rarely, e may be one less than the result exponent value.
+		e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));
+
+		if (s == 1 / 0) {
+			n = '5e' + e;
+		} else {
+			n = s.toExponential();
+			n = n.slice(0, n.indexOf('e') + 1) + e;
+		}
+
+		r = new Ctor(n);
+		r.s = x.s;
+	} else {
+		r = new Ctor(s.toString());
+	}
+
+	sd = (e = Ctor.precision) + 3;
+
+	// Halley's method.
+	// TODO? Compare Newton's method.
+	for (;;) {
+		t = r;
+		t3 = t.times(t).times(t);
+		t3plusx = t3.plus(x);
+		r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);
+
+		// TODO? Replace with for-loop and checkRoundingDigits.
+		if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
+			n = n.slice(sd - 3, sd + 1);
+
+			// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999
+			// , i.e. approaching a rounding boundary, continue the iteration.
+			if (n == '9999' || !rep && n == '4999') {
+
+				// On the first iteration only, check to see if rounding up gives the exact result as the
+				// nines may infinitely repeat.
+				if (!rep) {
+					finalise(t, e + 1, 0);
+
+					if (t.times(t).times(t).eq(x)) {
+						r = t;
+						break;
+					}
+				}
+
+				sd += 4;
+				rep = 1;
+			} else {
+
+				// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
+				// If not, then there are further digits and m will be truthy.
+				if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
+
+					// Truncate to the first rounding digit.
+					finalise(r, e + 1, 1);
+					m = !r.times(r).times(r).eq(x);
+				}
+
+				break;
+			}
+		}
+	}
+
+	external = true;
+
+	return finalise(r, e, Ctor.rounding, m);
+};
+
+
+/*
+ * Return the number of decimal places of the value of this Decimal.
+ *
+ */
+P.decimalPlaces = P.dp = function() {
+	var w,
+		d = this.d,
+		n = NaN;
+
+	if (d) {
+		w = d.length - 1;
+		n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;
+
+		// Subtract the number of trailing zeros of the last word.
+		w = d[w];
+		if (w)
+			for (; w % 10 == 0; w /= 10) n--;
+		if (n < 0) n = 0;
+	}
+
+	return n;
+};
+
+
+/*
+ *  n / 0 = I
+ *  n / N = N
+ *  n / I = 0
+ *  0 / n = 0
+ *  0 / 0 = N
+ *  0 / N = N
+ *  0 / I = 0
+ *  N / n = N
+ *  N / 0 = N
+ *  N / N = N
+ *  N / I = N
+ *  I / n = I
+ *  I / 0 = I
+ *  I / N = N
+ *  I / I = N
+ *
+ * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ */
+P.dividedBy = P.div = function(y) {
+	return divide(this, new this.constructor(y));
+};
+
+
+/*
+ * Return a new Decimal whose value is the integer part of dividing the value of this Decimal
+ * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`.
+ *
+ */
+P.dividedToIntegerBy = P.divToInt = function(y) {
+	var x = this,
+		Ctor = x.constructor;
+	return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);
+};
+
+
+/*
+ * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.
+ *
+ */
+P.equals = P.eq = function(y) {
+	return this.cmp(y) === 0;
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the
+ * direction of negative Infinity.
+ *
+ */
+P.floor = function() {
+	return finalise(new this.constructor(this), this.e + 1, 3);
+};
+
+
+/*
+ * Return true if the value of this Decimal is greater than the value of `y`, otherwise return
+ * false.
+ *
+ */
+P.greaterThan = P.gt = function(y) {
+	return this.cmp(y) > 0;
+};
+
+
+/*
+ * Return true if the value of this Decimal is greater than or equal to the value of `y`,
+ * otherwise return false.
+ *
+ */
+P.greaterThanOrEqualTo = P.gte = function(y) {
+	var k = this.cmp(y);
+	return k == 1 || k === 0;
+};
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this
+ * Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [1, Infinity]
+ *
+ * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...
+ *
+ * cosh(0)         = 1
+ * cosh(-0)        = 1
+ * cosh(Infinity)  = Infinity
+ * cosh(-Infinity) = Infinity
+ * cosh(NaN)       = NaN
+ *
+ *  x        time taken (ms)   result
+ * 1000      9                 9.8503555700852349694e+433
+ * 10000     25                4.4034091128314607936e+4342
+ * 100000    171               1.4033316802130615897e+43429
+ * 1000000   3817              1.5166076984010437725e+434294
+ * 10000000  abandoned after 2 minute wait
+ *
+ * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x))
+ *
+ */
+P.hyperbolicCosine = P.cosh = function() {
+	var k, n, pr, rm, len,
+		x = this,
+		Ctor = x.constructor,
+		one = new Ctor(1);
+
+	if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);
+	if (x.isZero()) return one;
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
+	Ctor.rounding = 1;
+	len = x.d.length;
+
+	// Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1
+	// i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))
+
+	// Estimate the optimum number of times to use the argument reduction.
+	// TODO? Estimation reused from cosine() and may not be optimal here.
+	if (len < 32) {
+		k = Math.ceil(len / 3);
+		n = (1 / tinyPow(4, k)).toString();
+	} else {
+		k = 16;
+		n = '2.3283064365386962890625e-10';
+	}
+
+	x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);
+
+	// Reverse argument reduction
+	var cosh2_x,
+		i = k,
+		d8 = new Ctor(8);
+	for (; i--;) {
+		cosh2_x = x.times(x);
+		x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));
+	}
+
+	return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);
+};
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this
+ * Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-Infinity, Infinity]
+ *
+ * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...
+ *
+ * sinh(0)         = 0
+ * sinh(-0)        = -0
+ * sinh(Infinity)  = Infinity
+ * sinh(-Infinity) = -Infinity
+ * sinh(NaN)       = NaN
+ *
+ * x        time taken (ms)
+ * 10       2 ms
+ * 100      5 ms
+ * 1000     14 ms
+ * 10000    82 ms
+ * 100000   886 ms            1.4033316802130615897e+43429
+ * 200000   2613 ms
+ * 300000   5407 ms
+ * 400000   8824 ms
+ * 500000   13026 ms          8.7080643612718084129e+217146
+ * 1000000  48543 ms
+ *
+ * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x))
+ *
+ */
+P.hyperbolicSine = P.sinh = function() {
+	var k, pr, rm, len,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite() || x.isZero()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
+	Ctor.rounding = 1;
+	len = x.d.length;
+
+	if (len < 3) {
+		x = taylorSeries(Ctor, 2, x, x, true);
+	} else {
+
+		// Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))
+		// i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))
+		// 3 multiplications and 1 addition
+
+		// Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))
+		// i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))
+		// 4 multiplications and 2 additions
+
+		// Estimate the optimum number of times to use the argument reduction.
+		k = 1.4 * Math.sqrt(len);
+		k = k > 16 ? 16 : k | 0;
+
+		x = x.times(1 / tinyPow(5, k));
+		x = taylorSeries(Ctor, 2, x, x, true);
+
+		// Reverse argument reduction
+		var sinh2_x,
+			d5 = new Ctor(5),
+			d16 = new Ctor(16),
+			d20 = new Ctor(20);
+		for (; k--;) {
+			sinh2_x = x.times(x);
+			x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));
+		}
+	}
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return finalise(x, pr, rm, true);
+};
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this
+ * Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-1, 1]
+ *
+ * tanh(x) = sinh(x) / cosh(x)
+ *
+ * tanh(0)         = 0
+ * tanh(-0)        = -0
+ * tanh(Infinity)  = 1
+ * tanh(-Infinity) = -1
+ * tanh(NaN)       = NaN
+ *
+ */
+P.hyperbolicTangent = P.tanh = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite()) return new Ctor(x.s);
+	if (x.isZero()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + 7;
+	Ctor.rounding = 1;
+
+	return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);
+};
+
+
+/*
+ * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of
+ * this Decimal.
+ *
+ * Domain: [-1, 1]
+ * Range: [0, pi]
+ *
+ * acos(x) = pi/2 - asin(x)
+ *
+ * acos(0)       = pi/2
+ * acos(-0)      = pi/2
+ * acos(1)       = 0
+ * acos(-1)      = pi
+ * acos(1/2)     = pi/3
+ * acos(-1/2)    = 2*pi/3
+ * acos(|x| > 1) = NaN
+ * acos(NaN)     = NaN
+ *
+ */
+P.inverseCosine = P.acos = function() {
+	var halfPi,
+		x = this,
+		Ctor = x.constructor,
+		k = x.abs().cmp(1),
+		pr = Ctor.precision,
+		rm = Ctor.rounding;
+
+	if (k !== -1) {
+		return k === 0
+			// |x| is 1
+			?
+			x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0)
+			// |x| > 1 or x is NaN
+			:
+			new Ctor(NaN);
+	}
+
+	if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);
+
+	// TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3
+
+	Ctor.precision = pr + 6;
+	Ctor.rounding = 1;
+
+	x = x.asin();
+	halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return halfPi.minus(x);
+};
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the
+ * value of this Decimal.
+ *
+ * Domain: [1, Infinity]
+ * Range: [0, Infinity]
+ *
+ * acosh(x) = ln(x + sqrt(x^2 - 1))
+ *
+ * acosh(x < 1)     = NaN
+ * acosh(NaN)       = NaN
+ * acosh(Infinity)  = Infinity
+ * acosh(-Infinity) = NaN
+ * acosh(0)         = NaN
+ * acosh(-0)        = NaN
+ * acosh(1)         = 0
+ * acosh(-1)        = NaN
+ *
+ */
+P.inverseHyperbolicCosine = P.acosh = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);
+	if (!x.isFinite()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;
+	Ctor.rounding = 1;
+	external = false;
+
+	x = x.times(x).minus(1).sqrt().plus(x);
+
+	external = true;
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return x.ln();
+};
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value
+ * of this Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-Infinity, Infinity]
+ *
+ * asinh(x) = ln(x + sqrt(x^2 + 1))
+ *
+ * asinh(NaN)       = NaN
+ * asinh(Infinity)  = Infinity
+ * asinh(-Infinity) = -Infinity
+ * asinh(0)         = 0
+ * asinh(-0)        = -0
+ *
+ */
+P.inverseHyperbolicSine = P.asinh = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite() || x.isZero()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;
+	Ctor.rounding = 1;
+	external = false;
+
+	x = x.times(x).plus(1).sqrt().plus(x);
+
+	external = true;
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return x.ln();
+};
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the
+ * value of this Decimal.
+ *
+ * Domain: [-1, 1]
+ * Range: [-Infinity, Infinity]
+ *
+ * atanh(x) = 0.5 * ln((1 + x) / (1 - x))
+ *
+ * atanh(|x| > 1)   = NaN
+ * atanh(NaN)       = NaN
+ * atanh(Infinity)  = NaN
+ * atanh(-Infinity) = NaN
+ * atanh(0)         = 0
+ * atanh(-0)        = -0
+ * atanh(1)         = Infinity
+ * atanh(-1)        = -Infinity
+ *
+ */
+P.inverseHyperbolicTangent = P.atanh = function() {
+	var pr, rm, wpr, xsd,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite()) return new Ctor(NaN);
+	if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	xsd = x.sd();
+
+	if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true);
+
+	Ctor.precision = wpr = xsd - x.e;
+
+	x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);
+
+	Ctor.precision = pr + 4;
+	Ctor.rounding = 1;
+
+	x = x.ln();
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return x.times(0.5);
+};
+
+
+/*
+ * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this
+ * Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-pi/2, pi/2]
+ *
+ * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2)))
+ *
+ * asin(0)       = 0
+ * asin(-0)      = -0
+ * asin(1/2)     = pi/6
+ * asin(-1/2)    = -pi/6
+ * asin(1)       = pi/2
+ * asin(-1)      = -pi/2
+ * asin(|x| > 1) = NaN
+ * asin(NaN)     = NaN
+ *
+ * TODO? Compare performance of Taylor series.
+ *
+ */
+P.inverseSine = P.asin = function() {
+	var halfPi, k,
+		pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (x.isZero()) return new Ctor(x);
+
+	k = x.abs().cmp(1);
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+
+	if (k !== -1) {
+
+		// |x| is 1
+		if (k === 0) {
+			halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
+			halfPi.s = x.s;
+			return halfPi;
+		}
+
+		// |x| > 1 or x is NaN
+		return new Ctor(NaN);
+	}
+
+	// TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6
+
+	Ctor.precision = pr + 6;
+	Ctor.rounding = 1;
+
+	x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return x.times(2);
+};
+
+
+/*
+ * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value
+ * of this Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-pi/2, pi/2]
+ *
+ * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
+ *
+ * atan(0)         = 0
+ * atan(-0)        = -0
+ * atan(1)         = pi/4
+ * atan(-1)        = -pi/4
+ * atan(Infinity)  = pi/2
+ * atan(-Infinity) = -pi/2
+ * atan(NaN)       = NaN
+ *
+ */
+P.inverseTangent = P.atan = function() {
+	var i, j, k, n, px, t, r, wpr, x2,
+		x = this,
+		Ctor = x.constructor,
+		pr = Ctor.precision,
+		rm = Ctor.rounding;
+
+	if (!x.isFinite()) {
+		if (!x.s) return new Ctor(NaN);
+		if (pr + 4 <= PI_PRECISION) {
+			r = getPi(Ctor, pr + 4, rm).times(0.5);
+			r.s = x.s;
+			return r;
+		}
+	} else if (x.isZero()) {
+		return new Ctor(x);
+	} else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {
+		r = getPi(Ctor, pr + 4, rm).times(0.25);
+		r.s = x.s;
+		return r;
+	}
+
+	Ctor.precision = wpr = pr + 10;
+	Ctor.rounding = 1;
+
+	// TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);
+
+	// Argument reduction
+	// Ensure |x| < 0.42
+	// atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))
+
+	k = Math.min(28, wpr / LOG_BASE + 2 | 0);
+
+	for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));
+
+	external = false;
+
+	j = Math.ceil(wpr / LOG_BASE);
+	n = 1;
+	x2 = x.times(x);
+	r = new Ctor(x);
+	px = x;
+
+	// atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
+	for (; i !== -1;) {
+		px = px.times(x2);
+		t = r.minus(px.div(n += 2));
+
+		px = px.times(x2);
+		r = t.plus(px.div(n += 2));
+
+		if (r.d[j] !== void 0)
+			for (i = j; r.d[i] === t.d[i] && i--;);
+	}
+
+	if (k) r = r.times(2 << (k - 1));
+
+	external = true;
+
+	return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);
+};
+
+
+/*
+ * Return true if the value of this Decimal is a finite number, otherwise return false.
+ *
+ */
+P.isFinite = function() {
+	return !!this.d;
+};
+
+
+/*
+ * Return true if the value of this Decimal is an integer, otherwise return false.
+ *
+ */
+P.isInteger = P.isInt = function() {
+	return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;
+};
+
+
+/*
+ * Return true if the value of this Decimal is NaN, otherwise return false.
+ *
+ */
+P.isNaN = function() {
+	return !this.s;
+};
+
+
+/*
+ * Return true if the value of this Decimal is negative, otherwise return false.
+ *
+ */
+P.isNegative = P.isNeg = function() {
+	return this.s < 0;
+};
+
+
+/*
+ * Return true if the value of this Decimal is positive, otherwise return false.
+ *
+ */
+P.isPositive = P.isPos = function() {
+	return this.s > 0;
+};
+
+
+/*
+ * Return true if the value of this Decimal is 0 or -0, otherwise return false.
+ *
+ */
+P.isZero = function() {
+	return !!this.d && this.d[0] === 0;
+};
+
+
+/*
+ * Return true if the value of this Decimal is less than `y`, otherwise return false.
+ *
+ */
+P.lessThan = P.lt = function(y) {
+	return this.cmp(y) < 0;
+};
+
+
+/*
+ * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.
+ *
+ */
+P.lessThanOrEqualTo = P.lte = function(y) {
+	return this.cmp(y) < 1;
+};
+
+
+/*
+ * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * If no base is specified, return log[10](arg).
+ *
+ * log[base](arg) = ln(arg) / ln(base)
+ *
+ * The result will always be correctly rounded if the base of the log is 10, and 'almost always'
+ * otherwise:
+ *
+ * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen
+ * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error
+ * between the result and the correctly rounded result will be one ulp (unit in the last place).
+ *
+ * log[-b](a)       = NaN
+ * log[0](a)        = NaN
+ * log[1](a)        = NaN
+ * log[NaN](a)      = NaN
+ * log[Infinity](a) = NaN
+ * log[b](0)        = -Infinity
+ * log[b](-0)       = -Infinity
+ * log[b](-a)       = NaN
+ * log[b](1)        = 0
+ * log[b](Infinity) = Infinity
+ * log[b](NaN)      = NaN
+ *
+ * [base] {number|string|Decimal} The base of the logarithm.
+ *
+ */
+P.logarithm = P.log = function(base) {
+	var isBase10, d, denominator, k, inf, num, sd, r,
+		arg = this,
+		Ctor = arg.constructor,
+		pr = Ctor.precision,
+		rm = Ctor.rounding,
+		guard = 5;
+
+	// Default base is 10.
+	if (base == null) {
+		base = new Ctor(10);
+		isBase10 = true;
+	} else {
+		base = new Ctor(base);
+		d = base.d;
+
+		// Return NaN if base is negative, or non-finite, or is 0 or 1.
+		if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);
+
+		isBase10 = base.eq(10);
+	}
+
+	d = arg.d;
+
+	// Is arg negative, non-finite, 0 or 1?
+	if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {
+		return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);
+	}
+
+	// The result will have a non-terminating decimal expansion if base is 10 and arg is not an
+	// integer power of 10.
+	if (isBase10) {
+		if (d.length > 1) {
+			inf = true;
+		} else {
+			for (k = d[0]; k % 10 === 0;) k /= 10;
+			inf = k !== 1;
+		}
+	}
+
+	external = false;
+	sd = pr + guard;
+	num = naturalLogarithm(arg, sd);
+	denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
+
+	// The result will have 5 rounding digits.
+	r = divide(num, denominator, sd, 1);
+
+	// If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,
+	// calculate 10 further digits.
+	//
+	// If the result is known to have an infinite decimal expansion, repeat this until it is clear
+	// that the result is above or below the boundary. Otherwise, if after calculating the 10
+	// further digits, the last 14 are nines, round up and assume the result is exact.
+	// Also assume the result is exact if the last 14 are zero.
+	//
+	// Example of a result that will be incorrectly rounded:
+	// log[1048576](4503599627370502) = 2.60000000000000009610279511444746...
+	// The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it
+	// will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so
+	// the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal
+	// place is still 2.6.
+	if (checkRoundingDigits(r.d, k = pr, rm)) {
+
+		do {
+			sd += 10;
+			num = naturalLogarithm(arg, sd);
+			denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
+			r = divide(num, denominator, sd, 1);
+
+			if (!inf) {
+
+				// Check for 14 nines from the 2nd rounding digit, as the first may be 4.
+				if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {
+					r = finalise(r, pr + 1, 0);
+				}
+
+				break;
+			}
+		} while (checkRoundingDigits(r.d, k += 10, rm));
+	}
+
+	external = true;
+
+	return finalise(r, pr, rm);
+};
+
+
+/*
+ * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal.
+ *
+ * arguments {number|string|Decimal}
+ *
+P.max = function () {
+  Array.prototype.push.call(arguments, this);
+  return maxOrMin(this.constructor, arguments, 'lt');
+};
+ */
+
+
+/*
+ * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal.
+ *
+ * arguments {number|string|Decimal}
+ *
+P.min = function () {
+  Array.prototype.push.call(arguments, this);
+  return maxOrMin(this.constructor, arguments, 'gt');
+};
+ */
+
+
+/*
+ *  n - 0 = n
+ *  n - N = N
+ *  n - I = -I
+ *  0 - n = -n
+ *  0 - 0 = 0
+ *  0 - N = N
+ *  0 - I = -I
+ *  N - n = N
+ *  N - 0 = N
+ *  N - N = N
+ *  N - I = N
+ *  I - n = I
+ *  I - 0 = I
+ *  I - N = N
+ *  I - I = N
+ *
+ * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ */
+P.minus = P.sub = function(y) {
+	var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd,
+		x = this,
+		Ctor = x.constructor;
+
+	y = new Ctor(y);
+
+	// If either is not finite...
+	if (!x.d || !y.d) {
+
+		// Return NaN if either is NaN.
+		if (!x.s || !y.s) y = new Ctor(NaN);
+
+		// Return y negated if x is finite and y is ±Infinity.
+		else if (x.d) y.s = -y.s;
+
+		// Return x if y is finite and x is ±Infinity.
+		// Return x if both are ±Infinity with different signs.
+		// Return NaN if both are ±Infinity with the same sign.
+		else y = new Ctor(y.d || x.s !== y.s ? x : NaN);
+
+		return y;
+	}
+
+	// If signs differ...
+	if (x.s != y.s) {
+		y.s = -y.s;
+		return x.plus(y);
+	}
+
+	xd = x.d;
+	yd = y.d;
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+
+	// If either is zero...
+	if (!xd[0] || !yd[0]) {
+
+		// Return y negated if x is zero and y is non-zero.
+		if (yd[0]) y.s = -y.s;
+
+		// Return x if y is zero and x is non-zero.
+		else if (xd[0]) y = new Ctor(x);
+
+		// Return zero if both are zero.
+		// From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.
+		else return new Ctor(rm === 3 ? -0 : 0);
+
+		return external ? finalise(y, pr, rm) : y;
+	}
+
+	// x and y are finite, non-zero numbers with the same sign.
+
+	// Calculate base 1e7 exponents.
+	e = mathfloor(y.e / LOG_BASE);
+	xe = mathfloor(x.e / LOG_BASE);
+
+	xd = xd.slice();
+	k = xe - e;
+
+	// If base 1e7 exponents differ...
+	if (k) {
+		xLTy = k < 0;
+
+		if (xLTy) {
+			d = xd;
+			k = -k;
+			len = yd.length;
+		} else {
+			d = yd;
+			e = xe;
+			len = xd.length;
+		}
+
+		// Numbers with massively different exponents would result in a very high number of
+		// zeros needing to be prepended, but this can be avoided while still ensuring correct
+		// rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.
+		i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;
+
+		if (k > i) {
+			k = i;
+			d.length = 1;
+		}
+
+		// Prepend zeros to equalise exponents.
+		d.reverse();
+		for (i = k; i--;) d.push(0);
+		d.reverse();
+
+		// Base 1e7 exponents equal.
+	} else {
+
+		// Check digits to determine which is the bigger number.
+
+		i = xd.length;
+		len = yd.length;
+		xLTy = i < len;
+		if (xLTy) len = i;
+
+		for (i = 0; i < len; i++) {
+			if (xd[i] != yd[i]) {
+				xLTy = xd[i] < yd[i];
+				break;
+			}
+		}
+
+		k = 0;
+	}
+
+	if (xLTy) {
+		d = xd;
+		xd = yd;
+		yd = d;
+		y.s = -y.s;
+	}
+
+	len = xd.length;
+
+	// Append zeros to `xd` if shorter.
+	// Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.
+	for (i = yd.length - len; i > 0; --i) xd[len++] = 0;
+
+	// Subtract yd from xd.
+	for (i = yd.length; i > k;) {
+
+		if (xd[--i] < yd[i]) {
+			for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;
+			--xd[j];
+			xd[i] += BASE;
+		}
+
+		xd[i] -= yd[i];
+	}
+
+	// Remove trailing zeros.
+	for (; xd[--len] === 0;) xd.pop();
+
+	// Remove leading zeros and adjust exponent accordingly.
+	for (; xd[0] === 0; xd.shift()) --e;
+
+	// Zero?
+	if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0);
+
+	y.d = xd;
+	y.e = getBase10Exponent(xd, e);
+
+	return external ? finalise(y, pr, rm) : y;
+};
+
+
+/*
+ *   n % 0 =  N
+ *   n % N =  N
+ *   n % I =  n
+ *   0 % n =  0
+ *  -0 % n = -0
+ *   0 % 0 =  N
+ *   0 % N =  N
+ *   0 % I =  0
+ *   N % n =  N
+ *   N % 0 =  N
+ *   N % N =  N
+ *   N % I =  N
+ *   I % n =  N
+ *   I % 0 =  N
+ *   I % N =  N
+ *   I % I =  N
+ *
+ * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ * The result depends on the modulo mode.
+ *
+ */
+P.modulo = P.mod = function(y) {
+	var q,
+		x = this,
+		Ctor = x.constructor;
+
+	y = new Ctor(y);
+
+	// Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.
+	if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN);
+
+	// Return x if y is ±Infinity or x is ±0.
+	if (!y.d || x.d && !x.d[0]) {
+		return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);
+	}
+
+	// Prevent rounding of intermediate calculations.
+	external = false;
+
+	if (Ctor.modulo == 9) {
+
+		// Euclidian division: q = sign(y) * floor(x / abs(y))
+		// result = x - q * y    where  0 <= result < abs(y)
+		q = divide(x, y.abs(), 0, 3, 1);
+		q.s *= y.s;
+	} else {
+		q = divide(x, y, 0, Ctor.modulo, 1);
+	}
+
+	q = q.times(y);
+
+	external = true;
+
+	return x.minus(q);
+};
+
+
+/*
+ * Return a new Decimal whose value is the natural exponential of the value of this Decimal,
+ * i.e. the base e raised to the power the value of this Decimal, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ */
+P.naturalExponential = P.exp = function() {
+	return naturalExponential(this);
+};
+
+
+/*
+ * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,
+ * rounded to `precision` significant digits using rounding mode `rounding`.
+ *
+ */
+P.naturalLogarithm = P.ln = function() {
+	return naturalLogarithm(this);
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by
+ * -1.
+ *
+ */
+P.negated = P.neg = function() {
+	var x = new this.constructor(this);
+	x.s = -x.s;
+	return finalise(x);
+};
+
+
+/*
+ *  n + 0 = n
+ *  n + N = N
+ *  n + I = I
+ *  0 + n = n
+ *  0 + 0 = 0
+ *  0 + N = N
+ *  0 + I = I
+ *  N + n = N
+ *  N + 0 = N
+ *  N + N = N
+ *  N + I = N
+ *  I + n = I
+ *  I + 0 = I
+ *  I + N = N
+ *  I + I = I
+ *
+ * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ */
+P.plus = P.add = function(y) {
+	var carry, d, e, i, k, len, pr, rm, xd, yd,
+		x = this,
+		Ctor = x.constructor;
+
+	y = new Ctor(y);
+
+	// If either is not finite...
+	if (!x.d || !y.d) {
+
+		// Return NaN if either is NaN.
+		if (!x.s || !y.s) y = new Ctor(NaN);
+
+		// Return x if y is finite and x is ±Infinity.
+		// Return x if both are ±Infinity with the same sign.
+		// Return NaN if both are ±Infinity with different signs.
+		// Return y if x is finite and y is ±Infinity.
+		else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN);
+
+		return y;
+	}
+
+	// If signs differ...
+	if (x.s != y.s) {
+		y.s = -y.s;
+		return x.minus(y);
+	}
+
+	xd = x.d;
+	yd = y.d;
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+
+	// If either is zero...
+	if (!xd[0] || !yd[0]) {
+
+		// Return x if y is zero.
+		// Return y if y is non-zero.
+		if (!yd[0]) y = new Ctor(x);
+
+		return external ? finalise(y, pr, rm) : y;
+	}
+
+	// x and y are finite, non-zero numbers with the same sign.
+
+	// Calculate base 1e7 exponents.
+	k = mathfloor(x.e / LOG_BASE);
+	e = mathfloor(y.e / LOG_BASE);
+
+	xd = xd.slice();
+	i = k - e;
+
+	// If base 1e7 exponents differ...
+	if (i) {
+
+		if (i < 0) {
+			d = xd;
+			i = -i;
+			len = yd.length;
+		} else {
+			d = yd;
+			e = k;
+			len = xd.length;
+		}
+
+		// Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.
+		k = Math.ceil(pr / LOG_BASE);
+		len = k > len ? k + 1 : len + 1;
+
+		if (i > len) {
+			i = len;
+			d.length = 1;
+		}
+
+		// Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
+		d.reverse();
+		for (; i--;) d.push(0);
+		d.reverse();
+	}
+
+	len = xd.length;
+	i = yd.length;
+
+	// If yd is longer than xd, swap xd and yd so xd points to the longer array.
+	if (len - i < 0) {
+		i = len;
+		d = yd;
+		yd = xd;
+		xd = d;
+	}
+
+	// Only start adding at yd.length - 1 as the further digits of xd can be left as they are.
+	for (carry = 0; i;) {
+		carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;
+		xd[i] %= BASE;
+	}
+
+	if (carry) {
+		xd.unshift(carry);
+		++e;
+	}
+
+	// Remove trailing zeros.
+	// No need to check for zero, as +x + +y != 0 && -x + -y != 0
+	for (len = xd.length; xd[--len] == 0;) xd.pop();
+
+	y.d = xd;
+	y.e = getBase10Exponent(xd, e);
+
+	return external ? finalise(y, pr, rm) : y;
+};
+
+
+/*
+ * Return the number of significant digits of the value of this Decimal.
+ *
+ * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
+ *
+ */
+P.precision = P.sd = function(z) {
+	var k,
+		x = this;
+
+	if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z);
+
+	if (x.d) {
+		k = getPrecision(x.d);
+		if (z && x.e + 1 > k) k = x.e + 1;
+	} else {
+		k = NaN;
+	}
+
+	return k;
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using
+ * rounding mode `rounding`.
+ *
+ */
+P.round = function() {
+	var x = this,
+		Ctor = x.constructor;
+
+	return finalise(new Ctor(x), x.e + 1, Ctor.rounding);
+};
+
+
+/*
+ * Return a new Decimal whose value is the sine of the value in radians of this Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-1, 1]
+ *
+ * sin(x) = x - x^3/3! + x^5/5! - ...
+ *
+ * sin(0)         = 0
+ * sin(-0)        = -0
+ * sin(Infinity)  = NaN
+ * sin(-Infinity) = NaN
+ * sin(NaN)       = NaN
+ *
+ */
+P.sine = P.sin = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite()) return new Ctor(NaN);
+	if (x.isZero()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
+	Ctor.rounding = 1;
+
+	x = sine(Ctor, toLessThanHalfPi(Ctor, x));
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true);
+};
+
+
+/*
+ * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ *  sqrt(-n) =  N
+ *  sqrt(N)  =  N
+ *  sqrt(-I) =  N
+ *  sqrt(I)  =  I
+ *  sqrt(0)  =  0
+ *  sqrt(-0) = -0
+ *
+ */
+P.squareRoot = P.sqrt = function() {
+	var m, n, sd, r, rep, t,
+		x = this,
+		d = x.d,
+		e = x.e,
+		s = x.s,
+		Ctor = x.constructor;
+
+	// Negative/NaN/Infinity/zero?
+	if (s !== 1 || !d || !d[0]) {
+		return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0);
+	}
+
+	external = false;
+
+	// Initial estimate.
+	s = Math.sqrt(+x);
+
+	// Math.sqrt underflow/overflow?
+	// Pass x to Math.sqrt as integer, then adjust the exponent of the result.
+	if (s == 0 || s == 1 / 0) {
+		n = digitsToString(d);
+
+		if ((n.length + e) % 2 == 0) n += '0';
+		s = Math.sqrt(n);
+		e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);
+
+		if (s == 1 / 0) {
+			n = '5e' + e;
+		} else {
+			n = s.toExponential();
+			n = n.slice(0, n.indexOf('e') + 1) + e;
+		}
+
+		r = new Ctor(n);
+	} else {
+		r = new Ctor(s.toString());
+	}
+
+	sd = (e = Ctor.precision) + 3;
+
+	// Newton-Raphson iteration.
+	for (;;) {
+		t = r;
+		r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);
+
+		// TODO? Replace with for-loop and checkRoundingDigits.
+		if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
+			n = n.slice(sd - 3, sd + 1);
+
+			// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or
+			// 4999, i.e. approaching a rounding boundary, continue the iteration.
+			if (n == '9999' || !rep && n == '4999') {
+
+				// On the first iteration only, check to see if rounding up gives the exact result as the
+				// nines may infinitely repeat.
+				if (!rep) {
+					finalise(t, e + 1, 0);
+
+					if (t.times(t).eq(x)) {
+						r = t;
+						break;
+					}
+				}
+
+				sd += 4;
+				rep = 1;
+			} else {
+
+				// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
+				// If not, then there are further digits and m will be truthy.
+				if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
+
+					// Truncate to the first rounding digit.
+					finalise(r, e + 1, 1);
+					m = !r.times(r).eq(x);
+				}
+
+				break;
+			}
+		}
+	}
+
+	external = true;
+
+	return finalise(r, e, Ctor.rounding, m);
+};
+
+
+/*
+ * Return a new Decimal whose value is the tangent of the value in radians of this Decimal.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-Infinity, Infinity]
+ *
+ * tan(0)         = 0
+ * tan(-0)        = -0
+ * tan(Infinity)  = NaN
+ * tan(-Infinity) = NaN
+ * tan(NaN)       = NaN
+ *
+ */
+P.tangent = P.tan = function() {
+	var pr, rm,
+		x = this,
+		Ctor = x.constructor;
+
+	if (!x.isFinite()) return new Ctor(NaN);
+	if (x.isZero()) return new Ctor(x);
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+	Ctor.precision = pr + 10;
+	Ctor.rounding = 1;
+
+	x = x.sin();
+	x.s = 1;
+	x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);
+
+	Ctor.precision = pr;
+	Ctor.rounding = rm;
+
+	return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true);
+};
+
+
+/*
+ *  n * 0 = 0
+ *  n * N = N
+ *  n * I = I
+ *  0 * n = 0
+ *  0 * 0 = 0
+ *  0 * N = N
+ *  0 * I = N
+ *  N * n = N
+ *  N * 0 = N
+ *  N * N = N
+ *  N * I = N
+ *  I * n = I
+ *  I * 0 = N
+ *  I * N = N
+ *  I * I = I
+ *
+ * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ */
+P.times = P.mul = function(y) {
+	var carry, e, i, k, r, rL, t, xdL, ydL,
+		x = this,
+		Ctor = x.constructor,
+		xd = x.d,
+		yd = (y = new Ctor(y)).d;
+
+	y.s *= x.s;
+
+	// If either is NaN, ±Infinity or ±0...
+	if (!xd || !xd[0] || !yd || !yd[0]) {
+
+		return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd
+
+			// Return NaN if either is NaN.
+			// Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.
+			?
+			NaN
+
+			// Return ±Infinity if either is ±Infinity.
+			// Return ±0 if either is ±0.
+			:
+			!xd || !yd ? y.s / 0 : y.s * 0);
+	}
+
+	e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE);
+	xdL = xd.length;
+	ydL = yd.length;
+
+	// Ensure xd points to the longer array.
+	if (xdL < ydL) {
+		r = xd;
+		xd = yd;
+		yd = r;
+		rL = xdL;
+		xdL = ydL;
+		ydL = rL;
+	}
+
+	// Initialise the result array with zeros.
+	r = [];
+	rL = xdL + ydL;
+	for (i = rL; i--;) r.push(0);
+
+	// Multiply!
+	for (i = ydL; --i >= 0;) {
+		carry = 0;
+		for (k = xdL + i; k > i;) {
+			t = r[k] + yd[i] * xd[k - i - 1] + carry;
+			r[k--] = t % BASE | 0;
+			carry = t / BASE | 0;
+		}
+
+		r[k] = (r[k] + carry) % BASE | 0;
+	}
+
+	// Remove trailing zeros.
+	for (; !r[--rL];) r.pop();
+
+	if (carry) ++e;
+	else r.shift();
+
+	y.d = r;
+	y.e = getBase10Exponent(r, e);
+
+	return external ? finalise(y, Ctor.precision, Ctor.rounding) : y;
+};
+
+
+/*
+ * Return a string representing the value of this Decimal in base 2, round to `sd` significant
+ * digits using rounding mode `rm`.
+ *
+ * If the optional `sd` argument is present then return binary exponential notation.
+ *
+ * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toBinary = function(sd, rm) {
+	return toStringBinary(this, 2, sd, rm);
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`
+ * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.
+ *
+ * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.
+ *
+ * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toDecimalPlaces = P.toDP = function(dp, rm) {
+	var x = this,
+		Ctor = x.constructor;
+
+	x = new Ctor(x);
+	if (dp === void 0) return x;
+
+	checkInt32(dp, 0, MAX_DIGITS);
+
+	if (rm === void 0) rm = Ctor.rounding;
+	else checkInt32(rm, 0, 8);
+
+	return finalise(x, dp + x.e + 1, rm);
+};
+
+
+/*
+ * Return a string representing the value of this Decimal in exponential notation rounded to
+ * `dp` fixed decimal places using rounding mode `rounding`.
+ *
+ * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toExponential = function(dp, rm) {
+	var str,
+		x = this,
+		Ctor = x.constructor;
+
+	if (dp === void 0) {
+		str = finiteToString(x, true);
+	} else {
+		checkInt32(dp, 0, MAX_DIGITS);
+
+		if (rm === void 0) rm = Ctor.rounding;
+		else checkInt32(rm, 0, 8);
+
+		x = finalise(new Ctor(x), dp + 1, rm);
+		str = finiteToString(x, true, dp + 1);
+	}
+
+	return x.isNeg() && !x.isZero() ? '-' + str : str;
+};
+
+
+/*
+ * Return a string representing the value of this Decimal in normal (fixed-point) notation to
+ * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is
+ * omitted.
+ *
+ * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.
+ *
+ * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
+ * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
+ * (-0).toFixed(3) is '0.000'.
+ * (-0.5).toFixed(0) is '-0'.
+ *
+ */
+P.toFixed = function(dp, rm) {
+	var str, y,
+		x = this,
+		Ctor = x.constructor;
+
+	if (dp === void 0) {
+		str = finiteToString(x);
+	} else {
+		checkInt32(dp, 0, MAX_DIGITS);
+
+		if (rm === void 0) rm = Ctor.rounding;
+		else checkInt32(rm, 0, 8);
+
+		y = finalise(new Ctor(x), dp + x.e + 1, rm);
+		str = finiteToString(y, false, dp + y.e + 1);
+	}
+
+	// To determine whether to add the minus sign look at the value before it was rounded,
+	// i.e. look at `x` rather than `y`.
+	return x.isNeg() && !x.isZero() ? '-' + str : str;
+};
+
+
+/*
+ * Return an array representing the value of this Decimal as a simple fraction with an integer
+ * numerator and an integer denominator.
+ *
+ * The denominator will be a positive non-zero value less than or equal to the specified maximum
+ * denominator. If a maximum denominator is not specified, the denominator will be the lowest
+ * value necessary to represent the number exactly.
+ *
+ * [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity.
+ *
+ */
+P.toFraction = function(maxD) {
+	var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r,
+		x = this,
+		xd = x.d,
+		Ctor = x.constructor;
+
+	if (!xd) return new Ctor(x);
+
+	n1 = d0 = new Ctor(1);
+	d1 = n0 = new Ctor(0);
+
+	d = new Ctor(d1);
+	e = d.e = getPrecision(xd) - x.e - 1;
+	k = e % LOG_BASE;
+	d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k);
+
+	if (maxD == null) {
+
+		// d is 10**e, the minimum max-denominator needed.
+		maxD = e > 0 ? d : n1;
+	} else {
+		n = new Ctor(maxD);
+		if (!n.isInt() || n.lt(n1)) throw Error(invalidArgument + n);
+		maxD = n.gt(d) ? (e > 0 ? d : n1) : n;
+	}
+
+	external = false;
+	n = new Ctor(digitsToString(xd));
+	pr = Ctor.precision;
+	Ctor.precision = e = xd.length * LOG_BASE * 2;
+
+	for (;;) {
+		q = divide(n, d, 0, 1, 1);
+		d2 = d0.plus(q.times(d1));
+		if (d2.cmp(maxD) == 1) break;
+		d0 = d1;
+		d1 = d2;
+		d2 = n1;
+		n1 = n0.plus(q.times(d2));
+		n0 = d2;
+		d2 = d;
+		d = n.minus(q.times(d2));
+		n = d2;
+	}
+
+	d2 = divide(maxD.minus(d0), d1, 0, 1, 1);
+	n0 = n0.plus(d2.times(n1));
+	d0 = d0.plus(d2.times(d1));
+	n0.s = n1.s = x.s;
+
+	// Determine which fraction is closer to x, n0/d0 or n1/d1?
+	r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
+
+	Ctor.precision = pr;
+	external = true;
+
+	return r;
+};
+
+
+/*
+ * Return a string representing the value of this Decimal in base 16, round to `sd` significant
+ * digits using rounding mode `rm`.
+ *
+ * If the optional `sd` argument is present then return binary exponential notation.
+ *
+ * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toHexadecimal = P.toHex = function(sd, rm) {
+	return toStringBinary(this, 16, sd, rm);
+};
+
+
+/*
+ * Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding
+ * mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal.
+ *
+ * The return value will always have the same sign as this Decimal, unless either this Decimal
+ * or `y` is NaN, in which case the return value will be also be NaN.
+ *
+ * The return value is not affected by the value of `precision`.
+ *
+ * y {number|string|Decimal} The magnitude to round to a multiple of.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ * 'toNearest() rounding mode not an integer: {rm}'
+ * 'toNearest() rounding mode out of range: {rm}'
+ *
+ */
+P.toNearest = function(y, rm) {
+	var x = this,
+		Ctor = x.constructor;
+
+	x = new Ctor(x);
+
+	if (y == null) {
+
+		// If x is not finite, return x.
+		if (!x.d) return x;
+
+		y = new Ctor(1);
+		rm = Ctor.rounding;
+	} else {
+		y = new Ctor(y);
+		if (rm === void 0) {
+			rm = Ctor.rounding;
+		} else {
+			checkInt32(rm, 0, 8);
+		}
+
+		// If x is not finite, return x if y is not NaN, else NaN.
+		if (!x.d) return y.s ? x : y;
+
+		// If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.
+		if (!y.d) {
+			if (y.s) y.s = x.s;
+			return y;
+		}
+	}
+
+	// If y is not zero, calculate the nearest multiple of y to x.
+	if (y.d[0]) {
+		external = false;
+		x = divide(x, y, 0, rm, 1).times(y);
+		external = true;
+		finalise(x);
+
+		// If y is zero, return zero with the sign of x.
+	} else {
+		y.s = x.s;
+		x = y;
+	}
+
+	return x;
+};
+
+
+/*
+ * Return the value of this Decimal converted to a number primitive.
+ * Zero keeps its sign.
+ *
+ */
+P.toNumber = function() {
+	return +this;
+};
+
+
+/*
+ * Return a string representing the value of this Decimal in base 8, round to `sd` significant
+ * digits using rounding mode `rm`.
+ *
+ * If the optional `sd` argument is present then return binary exponential notation.
+ *
+ * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toOctal = function(sd, rm) {
+	return toStringBinary(this, 8, sd, rm);
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded
+ * to `precision` significant digits using rounding mode `rounding`.
+ *
+ * ECMAScript compliant.
+ *
+ *   pow(x, NaN)                           = NaN
+ *   pow(x, ±0)                            = 1
+
+ *   pow(NaN, non-zero)                    = NaN
+ *   pow(abs(x) > 1, +Infinity)            = +Infinity
+ *   pow(abs(x) > 1, -Infinity)            = +0
+ *   pow(abs(x) == 1, ±Infinity)           = NaN
+ *   pow(abs(x) < 1, +Infinity)            = +0
+ *   pow(abs(x) < 1, -Infinity)            = +Infinity
+ *   pow(+Infinity, y > 0)                 = +Infinity
+ *   pow(+Infinity, y < 0)                 = +0
+ *   pow(-Infinity, odd integer > 0)       = -Infinity
+ *   pow(-Infinity, even integer > 0)      = +Infinity
+ *   pow(-Infinity, odd integer < 0)       = -0
+ *   pow(-Infinity, even integer < 0)      = +0
+ *   pow(+0, y > 0)                        = +0
+ *   pow(+0, y < 0)                        = +Infinity
+ *   pow(-0, odd integer > 0)              = -0
+ *   pow(-0, even integer > 0)             = +0
+ *   pow(-0, odd integer < 0)              = -Infinity
+ *   pow(-0, even integer < 0)             = +Infinity
+ *   pow(finite x < 0, finite non-integer) = NaN
+ *
+ * For non-integer or very large exponents pow(x, y) is calculated using
+ *
+ *   x^y = exp(y*ln(x))
+ *
+ * Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the
+ * probability of an incorrectly rounded result
+ * P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14
+ * i.e. 1 in 250,000,000,000,000
+ *
+ * If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place).
+ *
+ * y {number|string|Decimal} The power to which to raise this Decimal.
+ *
+ */
+P.toPower = P.pow = function(y) {
+	var e, k, pr, r, rm, s,
+		x = this,
+		Ctor = x.constructor,
+		yn = +(y = new Ctor(y));
+
+	// Either ±Infinity, NaN or ±0?
+	if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn));
+
+	x = new Ctor(x);
+
+	if (x.eq(1)) return x;
+
+	pr = Ctor.precision;
+	rm = Ctor.rounding;
+
+	if (y.eq(1)) return finalise(x, pr, rm);
+
+	// y exponent
+	e = mathfloor(y.e / LOG_BASE);
+
+	// If y is a small integer use the 'exponentiation by squaring' algorithm.
+	if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {
+		r = intPow(Ctor, x, k, pr);
+		return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);
+	}
+
+	s = x.s;
+
+	// if x is negative
+	if (s < 0) {
+
+		// if y is not an integer
+		if (e < y.d.length - 1) return new Ctor(NaN);
+
+		// Result is positive if x is negative and the last digit of integer y is even.
+		if ((y.d[e] & 1) == 0) s = 1;
+
+		// if x.eq(-1)
+		if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) {
+			x.s = s;
+			return x;
+		}
+	}
+
+	// Estimate result exponent.
+	// x^y = 10^e,  where e = y * log10(x)
+	// log10(x) = log10(x_significand) + x_exponent
+	// log10(x_significand) = ln(x_significand) / ln(10)
+	k = mathpow(+x, yn);
+	e = k == 0 || !isFinite(k) ?
+		mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1)) :
+		new Ctor(k + '').e;
+
+	// Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.
+
+	// Overflow/underflow?
+	if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0);
+
+	external = false;
+	Ctor.rounding = x.s = 1;
+
+	// Estimate the extra guard digits needed to ensure five correct rounding digits from
+	// naturalLogarithm(x). Example of failure without these extra digits (precision: 10):
+	// new Decimal(2.32456).pow('2087987436534566.46411')
+	// should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815
+	k = Math.min(12, (e + '').length);
+
+	// r = x^y = exp(y*ln(x))
+	r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr);
+
+	// r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)
+	if (r.d) {
+
+		// Truncate to the required precision plus five rounding digits.
+		r = finalise(r, pr + 5, 1);
+
+		// If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate
+		// the result.
+		if (checkRoundingDigits(r.d, pr, rm)) {
+			e = pr + 10;
+
+			// Truncate to the increased precision plus five rounding digits.
+			r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1);
+
+			// Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).
+			if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) {
+				r = finalise(r, pr + 1, 0);
+			}
+		}
+	}
+
+	r.s = s;
+	external = true;
+	Ctor.rounding = rm;
+
+	return finalise(r, pr, rm);
+};
+
+
+/*
+ * Return a string representing the value of this Decimal rounded to `sd` significant digits
+ * using rounding mode `rounding`.
+ *
+ * Return exponential notation if `sd` is less than the number of digits necessary to represent
+ * the integer part of the value in normal notation.
+ *
+ * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ */
+P.toPrecision = function(sd, rm) {
+	var str,
+		x = this,
+		Ctor = x.constructor;
+
+	if (sd === void 0) {
+		str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
+	} else {
+		checkInt32(sd, 1, MAX_DIGITS);
+
+		if (rm === void 0) rm = Ctor.rounding;
+		else checkInt32(rm, 0, 8);
+
+		x = finalise(new Ctor(x), sd, rm);
+		str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd);
+	}
+
+	return x.isNeg() && !x.isZero() ? '-' + str : str;
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`
+ * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if
+ * omitted.
+ *
+ * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
+ *
+ * 'toSD() digits out of range: {sd}'
+ * 'toSD() digits not an integer: {sd}'
+ * 'toSD() rounding mode not an integer: {rm}'
+ * 'toSD() rounding mode out of range: {rm}'
+ *
+ */
+P.toSignificantDigits = P.toSD = function(sd, rm) {
+	var x = this,
+		Ctor = x.constructor;
+
+	if (sd === void 0) {
+		sd = Ctor.precision;
+		rm = Ctor.rounding;
+	} else {
+		checkInt32(sd, 1, MAX_DIGITS);
+
+		if (rm === void 0) rm = Ctor.rounding;
+		else checkInt32(rm, 0, 8);
+	}
+
+	return finalise(new Ctor(x), sd, rm);
+};
+
+
+/*
+ * Return a string representing the value of this Decimal.
+ *
+ * Return exponential notation if this Decimal has a positive exponent equal to or greater than
+ * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.
+ *
+ */
+P.toString = function() {
+	var x = this,
+		Ctor = x.constructor,
+		str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
+
+	return x.isNeg() && !x.isZero() ? '-' + str : str;
+};
+
+
+/*
+ * Return a new Decimal whose value is the value of this Decimal truncated to a whole number.
+ *
+ */
+P.truncated = P.trunc = function() {
+	return finalise(new this.constructor(this), this.e + 1, 1);
+};
+
+
+/*
+ * Return a string representing the value of this Decimal.
+ * Unlike `toString`, negative zero will include the minus sign.
+ *
+ */
+P.valueOf = P.toJSON = function() {
+	var x = this,
+		Ctor = x.constructor,
+		str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
+
+	return x.isNeg() ? '-' + str : str;
+};
+
+
+// Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.
+
+
+/*
+ *  digitsToString           P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower,
+ *                           finiteToString, naturalExponential, naturalLogarithm
+ *  checkInt32               P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest,
+ *                           P.toPrecision, P.toSignificantDigits, toStringBinary, random
+ *  checkRoundingDigits      P.logarithm, P.toPower, naturalExponential, naturalLogarithm
+ *  convertBase              toStringBinary, parseOther
+ *  cos                      P.cos
+ *  divide                   P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy,
+ *                           P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction,
+ *                           P.toNearest, toStringBinary, naturalExponential, naturalLogarithm,
+ *                           taylorSeries, atan2, parseOther
+ *  finalise                 P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh,
+ *                           P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus,
+ *                           P.modulo, P.negated, P.plus, P.round, P.sin, P.sinh, P.squareRoot,
+ *                           P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed,
+ *                           P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits,
+ *                           P.truncated, divide, getLn10, getPi, naturalExponential,
+ *                           naturalLogarithm, ceil, floor, round, trunc
+ *  finiteToString           P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf,
+ *                           toStringBinary
+ *  getBase10Exponent        P.minus, P.plus, P.times, parseOther
+ *  getLn10                  P.logarithm, naturalLogarithm
+ *  getPi                    P.acos, P.asin, P.atan, toLessThanHalfPi, atan2
+ *  getPrecision             P.precision, P.toFraction
+ *  getZeroString            digitsToString, finiteToString
+ *  intPow                   P.toPower, parseOther
+ *  isOdd                    toLessThanHalfPi
+ *  maxOrMin                 max, min
+ *  naturalExponential       P.naturalExponential, P.toPower
+ *  naturalLogarithm         P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm,
+ *                           P.toPower, naturalExponential
+ *  nonFiniteToString        finiteToString, toStringBinary
+ *  parseDecimal             Decimal
+ *  parseOther               Decimal
+ *  sin                      P.sin
+ *  taylorSeries             P.cosh, P.sinh, cos, sin
+ *  toLessThanHalfPi         P.cos, P.sin
+ *  toStringBinary           P.toBinary, P.toHexadecimal, P.toOctal
+ *  truncate                 intPow
+ *
+ *  Throws:                  P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi,
+ *                           naturalLogarithm, config, parseOther, random, Decimal
+ */
+
+
+function digitsToString(d) {
+	var i, k, ws,
+		indexOfLastWord = d.length - 1,
+		str = '',
+		w = d[0];
+
+	if (indexOfLastWord > 0) {
+		str += w;
+		for (i = 1; i < indexOfLastWord; i++) {
+			ws = d[i] + '';
+			k = LOG_BASE - ws.length;
+			if (k) str += getZeroString(k);
+			str += ws;
+		}
+
+		w = d[i];
+		ws = w + '';
+		k = LOG_BASE - ws.length;
+		if (k) str += getZeroString(k);
+	} else if (w === 0) {
+		return '0';
+	}
+
+	// Remove trailing zeros of last w.
+	for (; w % 10 === 0;) w /= 10;
+
+	return str + w;
+}
+
+
+function checkInt32(i, min, max) {
+	if (i !== ~~i || i < min || i > max) {
+		throw Error(invalidArgument + i);
+	}
+}
+
+
+/*
+ * Check 5 rounding digits if `repeating` is null, 4 otherwise.
+ * `repeating == null` if caller is `log` or `pow`,
+ * `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`.
+ */
+function checkRoundingDigits(d, i, rm, repeating) {
+	var di, k, r, rd;
+
+	// Get the length of the first word of the array d.
+	for (k = d[0]; k >= 10; k /= 10) --i;
+
+	// Is the rounding digit in the first word of d?
+	if (--i < 0) {
+		i += LOG_BASE;
+		di = 0;
+	} else {
+		di = Math.ceil((i + 1) / LOG_BASE);
+		i %= LOG_BASE;
+	}
+
+	// i is the index (0 - 6) of the rounding digit.
+	// E.g. if within the word 3487563 the first rounding digit is 5,
+	// then i = 4, k = 1000, rd = 3487563 % 1000 = 563
+	k = mathpow(10, LOG_BASE - i);
+	rd = d[di] % k | 0;
+
+	if (repeating == null) {
+		if (i < 3) {
+			if (i == 0) rd = rd / 100 | 0;
+			else if (i == 1) rd = rd / 10 | 0;
+			r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0;
+		} else {
+			r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) &&
+				(d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 ||
+				(rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0;
+		}
+	} else {
+		if (i < 4) {
+			if (i == 0) rd = rd / 1000 | 0;
+			else if (i == 1) rd = rd / 100 | 0;
+			else if (i == 2) rd = rd / 10 | 0;
+			r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999;
+		} else {
+			r = ((repeating || rm < 4) && rd + 1 == k ||
+					(!repeating && rm > 3) && rd + 1 == k / 2) &&
+				(d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1;
+		}
+	}
+
+	return r;
+}
+
+
+// Convert string of `baseIn` to an array of numbers of `baseOut`.
+// Eg. convertBase('255', 10, 16) returns [15, 15].
+// Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
+function convertBase(str, baseIn, baseOut) {
+	var j,
+		arr = [0],
+		arrL,
+		i = 0,
+		strL = str.length;
+
+	for (; i < strL;) {
+		for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn;
+		arr[0] += NUMERALS.indexOf(str.charAt(i++));
+		for (j = 0; j < arr.length; j++) {
+			if (arr[j] > baseOut - 1) {
+				if (arr[j + 1] === void 0) arr[j + 1] = 0;
+				arr[j + 1] += arr[j] / baseOut | 0;
+				arr[j] %= baseOut;
+			}
+		}
+	}
+
+	return arr.reverse();
+}
+
+
+/*
+ * cos(x) = 1 - x^2/2! + x^4/4! - ...
+ * |x| < pi/2
+ *
+ */
+function cosine(Ctor, x) {
+	var k, len, y;
+
+	if (x.isZero()) return x;
+
+	// Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1
+	// i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1
+
+	// Estimate the optimum number of times to use the argument reduction.
+	len = x.d.length;
+	if (len < 32) {
+		k = Math.ceil(len / 3);
+		y = (1 / tinyPow(4, k)).toString();
+	} else {
+		k = 16;
+		y = '2.3283064365386962890625e-10';
+	}
+
+	Ctor.precision += k;
+
+	x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));
+
+	// Reverse argument reduction
+	for (var i = k; i--;) {
+		var cos2x = x.times(x);
+		x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);
+	}
+
+	Ctor.precision -= k;
+
+	return x;
+}
+
+
+/*
+ * Perform division in the specified base.
+ */
+var divide = (function() {
+
+	// Assumes non-zero x and k, and hence non-zero result.
+	function multiplyInteger(x, k, base) {
+		var temp,
+			carry = 0,
+			i = x.length;
+
+		for (x = x.slice(); i--;) {
+			temp = x[i] * k + carry;
+			x[i] = temp % base | 0;
+			carry = temp / base | 0;
+		}
+
+		if (carry) x.unshift(carry);
+
+		return x;
+	}
+
+	function compare(a, b, aL, bL) {
+		var i, r;
+
+		if (aL != bL) {
+			r = aL > bL ? 1 : -1;
+		} else {
+			for (i = r = 0; i < aL; i++) {
+				if (a[i] != b[i]) {
+					r = a[i] > b[i] ? 1 : -1;
+					break;
+				}
+			}
+		}
+
+		return r;
+	}
+
+	function subtract(a, b, aL, base) {
+		var i = 0;
+
+		// Subtract b from a.
+		for (; aL--;) {
+			a[aL] -= i;
+			i = a[aL] < b[aL] ? 1 : 0;
+			a[aL] = i * base + a[aL] - b[aL];
+		}
+
+		// Remove leading zeros.
+		for (; !a[0] && a.length > 1;) a.shift();
+	}
+
+	return function(x, y, pr, rm, dp, base) {
+		var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0,
+			yL, yz,
+			Ctor = x.constructor,
+			sign = x.s == y.s ? 1 : -1,
+			xd = x.d,
+			yd = y.d;
+
+		// Either NaN, Infinity or 0?
+		if (!xd || !xd[0] || !yd || !yd[0]) {
+
+			return new Ctor( // Return NaN if either NaN, or both Infinity or 0.
+				!x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN :
+
+				// Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0.
+				xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0);
+		}
+
+		if (base) {
+			logBase = 1;
+			e = x.e - y.e;
+		} else {
+			base = BASE;
+			logBase = LOG_BASE;
+			e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase);
+		}
+
+		yL = yd.length;
+		xL = xd.length;
+		q = new Ctor(sign);
+		qd = q.d = [];
+
+		// Result exponent may be one less than e.
+		// The digit array of a Decimal from toStringBinary may have trailing zeros.
+		for (i = 0; yd[i] == (xd[i] || 0); i++);
+
+		if (yd[i] > (xd[i] || 0)) e--;
+
+		if (pr == null) {
+			sd = pr = Ctor.precision;
+			rm = Ctor.rounding;
+		} else if (dp) {
+			sd = pr + (x.e - y.e) + 1;
+		} else {
+			sd = pr;
+		}
+
+		if (sd < 0) {
+			qd.push(1);
+			more = true;
+		} else {
+
+			// Convert precision in number of base 10 digits to base 1e7 digits.
+			sd = sd / logBase + 2 | 0;
+			i = 0;
+
+			// divisor < 1e7
+			if (yL == 1) {
+				k = 0;
+				yd = yd[0];
+				sd++;
+
+				// k is the carry.
+				for (;
+					(i < xL || k) && sd--; i++) {
+					t = k * base + (xd[i] || 0);
+					qd[i] = t / yd | 0;
+					k = t % yd | 0;
+				}
+
+				more = k || i < xL;
+
+				// divisor >= 1e7
+			} else {
+
+				// Normalise xd and yd so highest order digit of yd is >= base/2
+				k = base / (yd[0] + 1) | 0;
+
+				if (k > 1) {
+					yd = multiplyInteger(yd, k, base);
+					xd = multiplyInteger(xd, k, base);
+					yL = yd.length;
+					xL = xd.length;
+				}
+
+				xi = yL;
+				rem = xd.slice(0, yL);
+				remL = rem.length;
+
+				// Add zeros to make remainder as long as divisor.
+				for (; remL < yL;) rem[remL++] = 0;
+
+				yz = yd.slice();
+				yz.unshift(0);
+				yd0 = yd[0];
+
+				if (yd[1] >= base / 2) ++yd0;
+
+				do {
+					k = 0;
+
+					// Compare divisor and remainder.
+					cmp = compare(yd, rem, yL, remL);
+
+					// If divisor < remainder.
+					if (cmp < 0) {
+
+						// Calculate trial digit, k.
+						rem0 = rem[0];
+						if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
+
+						// k will be how many times the divisor goes into the current remainder.
+						k = rem0 / yd0 | 0;
+
+						//  Algorithm:
+						//  1. product = divisor * trial digit (k)
+						//  2. if product > remainder: product -= divisor, k--
+						//  3. remainder -= product
+						//  4. if product was < remainder at 2:
+						//    5. compare new remainder and divisor
+						//    6. If remainder > divisor: remainder -= divisor, k++
+
+						if (k > 1) {
+							if (k >= base) k = base - 1;
+
+							// product = divisor * trial digit.
+							prod = multiplyInteger(yd, k, base);
+							prodL = prod.length;
+							remL = rem.length;
+
+							// Compare product and remainder.
+							cmp = compare(prod, rem, prodL, remL);
+
+							// product > remainder.
+							if (cmp == 1) {
+								k--;
+
+								// Subtract divisor from product.
+								subtract(prod, yL < prodL ? yz : yd, prodL, base);
+							}
+						} else {
+
+							// cmp is -1.
+							// If k is 0, there is no need to compare yd and rem again below, so change cmp to 1
+							// to avoid it. If k is 1 there is a need to compare yd and rem again below.
+							if (k == 0) cmp = k = 1;
+							prod = yd.slice();
+						}
+
+						prodL = prod.length;
+						if (prodL < remL) prod.unshift(0);
+
+						// Subtract product from remainder.
+						subtract(rem, prod, remL, base);
+
+						// If product was < previous remainder.
+						if (cmp == -1) {
+							remL = rem.length;
+
+							// Compare divisor and new remainder.
+							cmp = compare(yd, rem, yL, remL);
+
+							// If divisor < new remainder, subtract divisor from remainder.
+							if (cmp < 1) {
+								k++;
+
+								// Subtract divisor from remainder.
+								subtract(rem, yL < remL ? yz : yd, remL, base);
+							}
+						}
+
+						remL = rem.length;
+					} else if (cmp === 0) {
+						k++;
+						rem = [0];
+					} // if cmp === 1, k will be 0
+
+					// Add the next digit, k, to the result array.
+					qd[i++] = k;
+
+					// Update the remainder.
+					if (cmp && rem[0]) {
+						rem[remL++] = xd[xi] || 0;
+					} else {
+						rem = [xd[xi]];
+						remL = 1;
+					}
+
+				} while ((xi++ < xL || rem[0] !== void 0) && sd--);
+
+				more = rem[0] !== void 0;
+			}
+
+			// Leading zero?
+			if (!qd[0]) qd.shift();
+		}
+
+		// logBase is 1 when divide is being used for base conversion.
+		if (logBase == 1) {
+			q.e = e;
+			inexact = more;
+		} else {
+
+			// To calculate q.e, first get the number of digits of qd[0].
+			for (i = 1, k = qd[0]; k >= 10; k /= 10) i++;
+			q.e = i + e * logBase - 1;
+
+			finalise(q, dp ? pr + q.e + 1 : pr, rm, more);
+		}
+
+		return q;
+	};
+})();
+
+
+/*
+ * Round `x` to `sd` significant digits using rounding mode `rm`.
+ * Check for over/under-flow.
+ */
+function finalise(x, sd, rm, isTruncated) {
+	var digits, i, j, k, rd, roundUp, w, xd, xdi,
+		Ctor = x.constructor;
+
+	// Don't round if sd is null or undefined.
+	out: if (sd != null) {
+		xd = x.d;
+
+		// Infinity/NaN.
+		if (!xd) return x;
+
+		// rd: the rounding digit, i.e. the digit after the digit that may be rounded up.
+		// w: the word of xd containing rd, a base 1e7 number.
+		// xdi: the index of w within xd.
+		// digits: the number of digits of w.
+		// i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if
+		// they had leading zeros)
+		// j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).
+
+		// Get the length of the first word of the digits array xd.
+		for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++;
+		i = sd - digits;
+
+		// Is the rounding digit in the first word of xd?
+		if (i < 0) {
+			i += LOG_BASE;
+			j = sd;
+			w = xd[xdi = 0];
+
+			// Get the rounding digit at index j of w.
+			rd = w / mathpow(10, digits - j - 1) % 10 | 0;
+		} else {
+			xdi = Math.ceil((i + 1) / LOG_BASE);
+			k = xd.length;
+			if (xdi >= k) {
+				if (isTruncated) {
+
+					// Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.
+					for (; k++ <= xdi;) xd.push(0);
+					w = rd = 0;
+					digits = 1;
+					i %= LOG_BASE;
+					j = i - LOG_BASE + 1;
+				} else {
+					break out;
+				}
+			} else {
+				w = k = xd[xdi];
+
+				// Get the number of digits of w.
+				for (digits = 1; k >= 10; k /= 10) digits++;
+
+				// Get the index of rd within w.
+				i %= LOG_BASE;
+
+				// Get the index of rd within w, adjusted for leading zeros.
+				// The number of leading zeros of w is given by LOG_BASE - digits.
+				j = i - LOG_BASE + digits;
+
+				// Get the rounding digit at index j of w.
+				rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0;
+			}
+		}
+
+		// Are there any non-zero digits after the rounding digit?
+		isTruncated = isTruncated || sd < 0 ||
+			xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1));
+
+		// The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right
+		// of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression
+		// will give 714.
+
+		roundUp = rm < 4 ?
+			(rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) :
+			rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 &&
+
+				// Check whether the digit to the left of the rounding digit is odd.
+				((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 ||
+				rm == (x.s < 0 ? 8 : 7));
+
+		if (sd < 1 || !xd[0]) {
+			xd.length = 0;
+			if (roundUp) {
+
+				// Convert sd to decimal places.
+				sd -= x.e + 1;
+
+				// 1, 0.1, 0.01, 0.001, 0.0001 etc.
+				xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);
+				x.e = -sd || 0;
+			} else {
+
+				// Zero.
+				xd[0] = x.e = 0;
+			}
+
+			return x;
+		}
+
+		// Remove excess digits.
+		if (i == 0) {
+			xd.length = xdi;
+			k = 1;
+			xdi--;
+		} else {
+			xd.length = xdi + 1;
+			k = mathpow(10, LOG_BASE - i);
+
+			// E.g. 56700 becomes 56000 if 7 is the rounding digit.
+			// j > 0 means i > number of leading zeros of w.
+			xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0;
+		}
+
+		if (roundUp) {
+			for (;;) {
+
+				// Is the digit to be rounded up in the first word of xd?
+				if (xdi == 0) {
+
+					// i will be the length of xd[0] before k is added.
+					for (i = 1, j = xd[0]; j >= 10; j /= 10) i++;
+					j = xd[0] += k;
+					for (k = 1; j >= 10; j /= 10) k++;
+
+					// if i != k the length has increased.
+					if (i != k) {
+						x.e++;
+						if (xd[0] == BASE) xd[0] = 1;
+					}
+
+					break;
+				} else {
+					xd[xdi] += k;
+					if (xd[xdi] != BASE) break;
+					xd[xdi--] = 0;
+					k = 1;
+				}
+			}
+		}
+
+		// Remove trailing zeros.
+		for (i = xd.length; xd[--i] === 0;) xd.pop();
+	}
+
+	if (external) {
+
+		// Overflow?
+		if (x.e > Ctor.maxE) {
+
+			// Infinity.
+			x.d = null;
+			x.e = NaN;
+
+			// Underflow?
+		} else if (x.e < Ctor.minE) {
+
+			// Zero.
+			x.e = 0;
+			x.d = [0];
+			// Ctor.underflow = true;
+		} // else Ctor.underflow = false;
+	}
+
+	return x;
+}
+
+
+function finiteToString(x, isExp, sd) {
+	if (!x.isFinite()) return nonFiniteToString(x);
+	var k,
+		e = x.e,
+		str = digitsToString(x.d),
+		len = str.length;
+
+	if (isExp) {
+		if (sd && (k = sd - len) > 0) {
+			str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);
+		} else if (len > 1) {
+			str = str.charAt(0) + '.' + str.slice(1);
+		}
+
+		str = str + (x.e < 0 ? 'e' : 'e+') + x.e;
+	} else if (e < 0) {
+		str = '0.' + getZeroString(-e - 1) + str;
+		if (sd && (k = sd - len) > 0) str += getZeroString(k);
+	} else if (e >= len) {
+		str += getZeroString(e + 1 - len);
+		if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);
+	} else {
+		if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);
+		if (sd && (k = sd - len) > 0) {
+			if (e + 1 === len) str += '.';
+			str += getZeroString(k);
+		}
+	}
+
+	return str;
+}
+
+
+// Calculate the base 10 exponent from the base 1e7 exponent.
+function getBase10Exponent(digits, e) {
+	var w = digits[0];
+
+	// Add the number of digits of the first word of the digits array.
+	for (e *= LOG_BASE; w >= 10; w /= 10) e++;
+	return e;
+}
+
+
+function getLn10(Ctor, sd, pr) {
+	if (sd > LN10_PRECISION) {
+
+		// Reset global state in case the exception is caught.
+		external = true;
+		if (pr) Ctor.precision = pr;
+		throw Error(precisionLimitExceeded);
+	}
+	return finalise(new Ctor(LN10), sd, 1, true);
+}
+
+
+function getPi(Ctor, sd, rm) {
+	if (sd > PI_PRECISION) throw Error(precisionLimitExceeded);
+	return finalise(new Ctor(PI), sd, rm, true);
+}
+
+
+function getPrecision(digits) {
+	var w = digits.length - 1,
+		len = w * LOG_BASE + 1;
+
+	w = digits[w];
+
+	// If non-zero...
+	if (w) {
+
+		// Subtract the number of trailing zeros of the last word.
+		for (; w % 10 == 0; w /= 10) len--;
+
+		// Add the number of digits of the first word.
+		for (w = digits[0]; w >= 10; w /= 10) len++;
+	}
+
+	return len;
+}
+
+
+function getZeroString(k) {
+	var zs = '';
+	for (; k--;) zs += '0';
+	return zs;
+}
+
+
+/*
+ * Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an
+ * integer of type number.
+ *
+ * Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`.
+ *
+ */
+function intPow(Ctor, x, n, pr) {
+	var isTruncated,
+		r = new Ctor(1),
+
+		// Max n of 9007199254740991 takes 53 loop iterations.
+		// Maximum digits array length; leaves [28, 34] guard digits.
+		k = Math.ceil(pr / LOG_BASE + 4);
+
+	external = false;
+
+	for (;;) {
+		if (n % 2) {
+			r = r.times(x);
+			if (truncate(r.d, k)) isTruncated = true;
+		}
+
+		n = mathfloor(n / 2);
+		if (n === 0) {
+
+			// To ensure correct rounding when r.d is truncated, increment the last word if it is zero.
+			n = r.d.length - 1;
+			if (isTruncated && r.d[n] === 0) ++r.d[n];
+			break;
+		}
+
+		x = x.times(x);
+		truncate(x.d, k);
+	}
+
+	external = true;
+
+	return r;
+}
+
+
+function isOdd(n) {
+	return n.d[n.d.length - 1] & 1;
+}
+
+
+/*
+ * Handle `max` and `min`. `ltgt` is 'lt' or 'gt'.
+ */
+function maxOrMin(Ctor, args, ltgt) {
+	var y,
+		x = new Ctor(args[0]),
+		i = 0;
+
+	for (; ++i < args.length;) {
+		y = new Ctor(args[i]);
+		if (!y.s) {
+			x = y;
+			break;
+		} else if (x[ltgt](y)) {
+			x = y;
+		}
+	}
+
+	return x;
+}
+
+
+/*
+ * Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant
+ * digits.
+ *
+ * Taylor/Maclaurin series.
+ *
+ * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...
+ *
+ * Argument reduction:
+ *   Repeat x = x / 32, k += 5, until |x| < 0.1
+ *   exp(x) = exp(x / 2^k)^(2^k)
+ *
+ * Previously, the argument was initially reduced by
+ * exp(x) = exp(r) * 10^k  where r = x - k * ln10, k = floor(x / ln10)
+ * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was
+ * found to be slower than just dividing repeatedly by 32 as above.
+ *
+ * Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000
+ * Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000
+ * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)
+ *
+ *  exp(Infinity)  = Infinity
+ *  exp(-Infinity) = 0
+ *  exp(NaN)       = NaN
+ *  exp(±0)        = 1
+ *
+ *  exp(x) is non-terminating for any finite, non-zero x.
+ *
+ *  The result will always be correctly rounded.
+ *
+ */
+function naturalExponential(x, sd) {
+	var denominator, guard, j, pow, sum, t, wpr,
+		rep = 0,
+		i = 0,
+		k = 0,
+		Ctor = x.constructor,
+		rm = Ctor.rounding,
+		pr = Ctor.precision;
+
+	// 0/NaN/Infinity?
+	if (!x.d || !x.d[0] || x.e > 17) {
+
+		return new Ctor(x.d ?
+			!x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0 :
+			x.s ? x.s < 0 ? 0 : x : 0 / 0);
+	}
+
+	if (sd == null) {
+		external = false;
+		wpr = pr;
+	} else {
+		wpr = sd;
+	}
+
+	t = new Ctor(0.03125);
+
+	// while abs(x) >= 0.1
+	while (x.e > -2) {
+
+		// x = x / 2^5
+		x = x.times(t);
+		k += 5;
+	}
+
+	// Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision
+	// necessary to ensure the first 4 rounding digits are correct.
+	guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;
+	wpr += guard;
+	denominator = pow = sum = new Ctor(1);
+	Ctor.precision = wpr;
+
+	for (;;) {
+		pow = finalise(pow.times(x), wpr, 1);
+		denominator = denominator.times(++i);
+		t = sum.plus(divide(pow, denominator, wpr, 1));
+
+		if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
+			j = k;
+			while (j--) sum = finalise(sum.times(sum), wpr, 1);
+
+			// Check to see if the first 4 rounding digits are [49]999.
+			// If so, repeat the summation with a higher precision, otherwise
+			// e.g. with precision: 18, rounding: 1
+			// exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)
+			// `wpr - guard` is the index of first rounding digit.
+			if (sd == null) {
+
+				if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
+					Ctor.precision = wpr += 10;
+					denominator = pow = t = new Ctor(1);
+					i = 0;
+					rep++;
+				} else {
+					return finalise(sum, Ctor.precision = pr, rm, external = true);
+				}
+			} else {
+				Ctor.precision = pr;
+				return sum;
+			}
+		}
+
+		sum = t;
+	}
+}
+
+
+/*
+ * Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant
+ * digits.
+ *
+ *  ln(-n)        = NaN
+ *  ln(0)         = -Infinity
+ *  ln(-0)        = -Infinity
+ *  ln(1)         = 0
+ *  ln(Infinity)  = Infinity
+ *  ln(-Infinity) = NaN
+ *  ln(NaN)       = NaN
+ *
+ *  ln(n) (n != 1) is non-terminating.
+ *
+ */
+function naturalLogarithm(y, sd) {
+	var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2,
+		n = 1,
+		guard = 10,
+		x = y,
+		xd = x.d,
+		Ctor = x.constructor,
+		rm = Ctor.rounding,
+		pr = Ctor.precision;
+
+	// Is x negative or Infinity, NaN, 0 or 1?
+	if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) {
+		return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x);
+	}
+
+	if (sd == null) {
+		external = false;
+		wpr = pr;
+	} else {
+		wpr = sd;
+	}
+
+	Ctor.precision = wpr += guard;
+	c = digitsToString(xd);
+	c0 = c.charAt(0);
+
+	if (Math.abs(e = x.e) < 1.5e15) {
+
+		// Argument reduction.
+		// The series converges faster the closer the argument is to 1, so using
+		// ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b
+		// multiply the argument by itself until the leading digits of the significand are 7, 8, 9,
+		// 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can
+		// later be divided by this number, then separate out the power of 10 using
+		// ln(a*10^b) = ln(a) + b*ln(10).
+
+		// max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).
+		//while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {
+		// max n is 6 (gives 0.7 - 1.3)
+		while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {
+			x = x.times(y);
+			c = digitsToString(x.d);
+			c0 = c.charAt(0);
+			n++;
+		}
+
+		e = x.e;
+
+		if (c0 > 1) {
+			x = new Ctor('0.' + c);
+			e++;
+		} else {
+			x = new Ctor(c0 + '.' + c.slice(1));
+		}
+	} else {
+
+		// The argument reduction method above may result in overflow if the argument y is a massive
+		// number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this
+		// function using ln(x*10^e) = ln(x) + e*ln(10).
+		t = getLn10(Ctor, wpr + 2, pr).times(e + '');
+		x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);
+		Ctor.precision = pr;
+
+		return sd == null ? finalise(x, pr, rm, external = true) : x;
+	}
+
+	// x1 is x reduced to a value near 1.
+	x1 = x;
+
+	// Taylor series.
+	// ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
+	// where x = (y - 1)/(y + 1)    (|x| < 1)
+	sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);
+	x2 = finalise(x.times(x), wpr, 1);
+	denominator = 3;
+
+	for (;;) {
+		numerator = finalise(numerator.times(x2), wpr, 1);
+		t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1));
+
+		if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
+			sum = sum.times(2);
+
+			// Reverse the argument reduction. Check that e is not 0 because, besides preventing an
+			// unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.
+			if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));
+			sum = divide(sum, new Ctor(n), wpr, 1);
+
+			// Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has
+			// been repeated previously) and the first 4 rounding digits 9999?
+			// If so, restart the summation with a higher precision, otherwise
+			// e.g. with precision: 12, rounding: 1
+			// ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.
+			// `wpr - guard` is the index of first rounding digit.
+			if (sd == null) {
+				if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) {
+					Ctor.precision = wpr += guard;
+					t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);
+					x2 = finalise(x.times(x), wpr, 1);
+					denominator = rep = 1;
+				} else {
+					return finalise(sum, Ctor.precision = pr, rm, external = true);
+				}
+			} else {
+				Ctor.precision = pr;
+				return sum;
+			}
+		}
+
+		sum = t;
+		denominator += 2;
+	}
+}
+
+
+// ±Infinity, NaN.
+function nonFiniteToString(x) {
+	// Unsigned.
+	return String(x.s * x.s / 0);
+}
+
+
+/*
+ * Parse the value of a new Decimal `x` from string `str`.
+ */
+function parseDecimal(x, str) {
+	var e, i, len;
+
+	// Decimal point?
+	if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
+
+	// Exponential form?
+	if ((i = str.search(/e/i)) > 0) {
+
+		// Determine exponent.
+		if (e < 0) e = i;
+		e += +str.slice(i + 1);
+		str = str.substring(0, i);
+	} else if (e < 0) {
+
+		// Integer.
+		e = str.length;
+	}
+
+	// Determine leading zeros.
+	for (i = 0; str.charCodeAt(i) === 48; i++);
+
+	// Determine trailing zeros.
+	for (len = str.length; str.charCodeAt(len - 1) === 48; --len);
+	str = str.slice(i, len);
+
+	if (str) {
+		len -= i;
+		x.e = e = e - i - 1;
+		x.d = [];
+
+		// Transform base
+
+		// e is the base 10 exponent.
+		// i is where to slice str to get the first word of the digits array.
+		i = (e + 1) % LOG_BASE;
+		if (e < 0) i += LOG_BASE;
+
+		if (i < len) {
+			if (i) x.d.push(+str.slice(0, i));
+			for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));
+			str = str.slice(i);
+			i = LOG_BASE - str.length;
+		} else {
+			i -= len;
+		}
+
+		for (; i--;) str += '0';
+		x.d.push(+str);
+
+		if (external) {
+
+			// Overflow?
+			if (x.e > x.constructor.maxE) {
+
+				// Infinity.
+				x.d = null;
+				x.e = NaN;
+
+				// Underflow?
+			} else if (x.e < x.constructor.minE) {
+
+				// Zero.
+				x.e = 0;
+				x.d = [0];
+				// x.constructor.underflow = true;
+			} // else x.constructor.underflow = false;
+		}
+	} else {
+
+		// Zero.
+		x.e = 0;
+		x.d = [0];
+	}
+
+	return x;
+}
+
+
+/*
+ * Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value.
+ */
+function parseOther(x, str) {
+	var base, Ctor, divisor, i, isFloat, len, p, xd, xe;
+
+	if (str.indexOf('_') > -1) {
+		str = str.replace(/(\d)_(?=\d)/g, '$1');
+		if (isDecimal.test(str)) return parseDecimal(x, str);
+	} else if (str === 'Infinity' || str === 'NaN') {
+		if (!+str) x.s = NaN;
+		x.e = NaN;
+		x.d = null;
+		return x;
+	}
+
+	if (isHex.test(str)) {
+		base = 16;
+		str = str.toLowerCase();
+	} else if (isBinary.test(str)) {
+		base = 2;
+	} else if (isOctal.test(str)) {
+		base = 8;
+	} else {
+		throw Error(invalidArgument + str);
+	}
+
+	// Is there a binary exponent part?
+	i = str.search(/p/i);
+
+	if (i > 0) {
+		p = +str.slice(i + 1);
+		str = str.substring(2, i);
+	} else {
+		str = str.slice(2);
+	}
+
+	// Convert `str` as an integer then divide the result by `base` raised to a power such that the
+	// fraction part will be restored.
+	i = str.indexOf('.');
+	isFloat = i >= 0;
+	Ctor = x.constructor;
+
+	if (isFloat) {
+		str = str.replace('.', '');
+		len = str.length;
+		i = len - i;
+
+		// log[10](16) = 1.2041... , log[10](88) = 1.9444....
+		divisor = intPow(Ctor, new Ctor(base), i, i * 2);
+	}
+
+	xd = convertBase(str, base, BASE);
+	xe = xd.length - 1;
+
+	// Remove trailing zeros.
+	for (i = xe; xd[i] === 0; --i) xd.pop();
+	if (i < 0) return new Ctor(x.s * 0);
+	x.e = getBase10Exponent(xd, xe);
+	x.d = xd;
+	external = false;
+
+	// At what precision to perform the division to ensure exact conversion?
+	// maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)
+	// log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412
+	// E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.
+	// maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount
+	// Therefore using 4 * the number of digits of str will always be enough.
+	if (isFloat) x = divide(x, divisor, len * 4);
+
+	// Multiply by the binary exponent part if present.
+	if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p));
+	external = true;
+
+	return x;
+}
+
+
+/*
+ * sin(x) = x - x^3/3! + x^5/5! - ...
+ * |x| < pi/2
+ *
+ */
+function sine(Ctor, x) {
+	var k,
+		len = x.d.length;
+
+	if (len < 3) {
+		return x.isZero() ? x : taylorSeries(Ctor, 2, x, x);
+	}
+
+	// Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)
+	// i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)
+	// and  sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))
+
+	// Estimate the optimum number of times to use the argument reduction.
+	k = 1.4 * Math.sqrt(len);
+	k = k > 16 ? 16 : k | 0;
+
+	x = x.times(1 / tinyPow(5, k));
+	x = taylorSeries(Ctor, 2, x, x);
+
+	// Reverse argument reduction
+	var sin2_x,
+		d5 = new Ctor(5),
+		d16 = new Ctor(16),
+		d20 = new Ctor(20);
+	for (; k--;) {
+		sin2_x = x.times(x);
+		x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20))));
+	}
+
+	return x;
+}
+
+
+// Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`.
+function taylorSeries(Ctor, n, x, y, isHyperbolic) {
+	var j, t, u, x2,
+		i = 1,
+		pr = Ctor.precision,
+		k = Math.ceil(pr / LOG_BASE);
+
+	external = false;
+	x2 = x.times(x);
+	u = new Ctor(y);
+
+	for (;;) {
+		t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1);
+		u = isHyperbolic ? y.plus(t) : y.minus(t);
+		y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1);
+		t = u.plus(y);
+
+		if (t.d[k] !== void 0) {
+			for (j = k; t.d[j] === u.d[j] && j--;);
+			if (j == -1) break;
+		}
+
+		j = u;
+		u = y;
+		y = t;
+		t = j;
+		i++;
+	}
+
+	external = true;
+	t.d.length = k + 1;
+
+	return t;
+}
+
+
+// Exponent e must be positive and non-zero.
+function tinyPow(b, e) {
+	var n = b;
+	while (--e) n *= b;
+	return n;
+}
+
+
+// Return the absolute value of `x` reduced to less than or equal to half pi.
+function toLessThanHalfPi(Ctor, x) {
+	var t,
+		isNeg = x.s < 0,
+		pi = getPi(Ctor, Ctor.precision, 1),
+		halfPi = pi.times(0.5);
+
+	x = x.abs();
+
+	if (x.lte(halfPi)) {
+		quadrant = isNeg ? 4 : 1;
+		return x;
+	}
+
+	t = x.divToInt(pi);
+
+	if (t.isZero()) {
+		quadrant = isNeg ? 3 : 2;
+	} else {
+		x = x.minus(t.times(pi));
+
+		// 0 <= x < pi
+		if (x.lte(halfPi)) {
+			quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1);
+			return x;
+		}
+
+		quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2);
+	}
+
+	return x.minus(pi).abs();
+}
+
+
+/*
+ * Return the value of Decimal `x` as a string in base `baseOut`.
+ *
+ * If the optional `sd` argument is present include a binary exponent suffix.
+ */
+function toStringBinary(x, baseOut, sd, rm) {
+	var base, e, i, k, len, roundUp, str, xd, y,
+		Ctor = x.constructor,
+		isExp = sd !== void 0;
+
+	if (isExp) {
+		checkInt32(sd, 1, MAX_DIGITS);
+		if (rm === void 0) rm = Ctor.rounding;
+		else checkInt32(rm, 0, 8);
+	} else {
+		sd = Ctor.precision;
+		rm = Ctor.rounding;
+	}
+
+	if (!x.isFinite()) {
+		str = nonFiniteToString(x);
+	} else {
+		str = finiteToString(x);
+		i = str.indexOf('.');
+
+		// Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:
+		// maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))
+		// minBinaryExponent = floor(decimalExponent * log[2](10))
+		// log[2](10) = 3.321928094887362347870319429489390175864
+
+		if (isExp) {
+			base = 2;
+			if (baseOut == 16) {
+				sd = sd * 4 - 3;
+			} else if (baseOut == 8) {
+				sd = sd * 3 - 2;
+			}
+		} else {
+			base = baseOut;
+		}
+
+		// Convert the number as an integer then divide the result by its base raised to a power such
+		// that the fraction part will be restored.
+
+		// Non-integer.
+		if (i >= 0) {
+			str = str.replace('.', '');
+			y = new Ctor(1);
+			y.e = str.length - i;
+			y.d = convertBase(finiteToString(y), 10, base);
+			y.e = y.d.length;
+		}
+
+		xd = convertBase(str, 10, base);
+		e = len = xd.length;
+
+		// Remove trailing zeros.
+		for (; xd[--len] == 0;) xd.pop();
+
+		if (!xd[0]) {
+			str = isExp ? '0p+0' : '0';
+		} else {
+			if (i < 0) {
+				e--;
+			} else {
+				x = new Ctor(x);
+				x.d = xd;
+				x.e = e;
+				x = divide(x, y, sd, rm, 0, base);
+				xd = x.d;
+				e = x.e;
+				roundUp = inexact;
+			}
+
+			// The rounding digit, i.e. the digit after the digit that may be rounded up.
+			i = xd[sd];
+			k = base / 2;
+			roundUp = roundUp || xd[sd + 1] !== void 0;
+
+			roundUp = rm < 4 ?
+				(i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2)) :
+				i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||
+					rm === (x.s < 0 ? 8 : 7));
+
+			xd.length = sd;
+
+			if (roundUp) {
+
+				// Rounding up may mean the previous digit has to be rounded up and so on.
+				for (; ++xd[--sd] > base - 1;) {
+					xd[sd] = 0;
+					if (!sd) {
+						++e;
+						xd.unshift(1);
+					}
+				}
+			}
+
+			// Determine trailing zeros.
+			for (len = xd.length; !xd[len - 1]; --len);
+
+			// E.g. [4, 11, 15] becomes 4bf.
+			for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]);
+
+			// Add binary exponent suffix?
+			if (isExp) {
+				if (len > 1) {
+					if (baseOut == 16 || baseOut == 8) {
+						i = baseOut == 16 ? 4 : 3;
+						for (--len; len % i; len++) str += '0';
+						xd = convertBase(str, base, baseOut);
+						for (len = xd.length; !xd[len - 1]; --len);
+
+						// xd[0] will always be be 1
+						for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]);
+					} else {
+						str = str.charAt(0) + '.' + str.slice(1);
+					}
+				}
+
+				str = str + (e < 0 ? 'p' : 'p+') + e;
+			} else if (e < 0) {
+				for (; ++e;) str = '0' + str;
+				str = '0.' + str;
+			} else {
+				if (++e > len)
+					for (e -= len; e--;) str += '0';
+				else if (e < len) str = str.slice(0, e) + '.' + str.slice(e);
+			}
+		}
+
+		str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str;
+	}
+
+	return x.s < 0 ? '-' + str : str;
+}
+
+
+// Does not strip trailing zeros.
+function truncate(arr, len) {
+	if (arr.length > len) {
+		arr.length = len;
+		return true;
+	}
+}
+
+
+// Decimal methods
+
+
+/*
+ *  abs
+ *  acos
+ *  acosh
+ *  add
+ *  asin
+ *  asinh
+ *  atan
+ *  atanh
+ *  atan2
+ *  cbrt
+ *  ceil
+ *  clamp
+ *  clone
+ *  config
+ *  cos
+ *  cosh
+ *  div
+ *  exp
+ *  floor
+ *  hypot
+ *  ln
+ *  log
+ *  log2
+ *  log10
+ *  max
+ *  min
+ *  mod
+ *  mul
+ *  pow
+ *  random
+ *  round
+ *  set
+ *  sign
+ *  sin
+ *  sinh
+ *  sqrt
+ *  sub
+ *  sum
+ *  tan
+ *  tanh
+ *  trunc
+ */
+
+
+/*
+ * Return a new Decimal whose value is the absolute value of `x`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function abs(x) {
+	return new this(x).abs();
+}
+
+
+/*
+ * Return a new Decimal whose value is the arccosine in radians of `x`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function acos(x) {
+	return new this(x).acos();
+}
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function acosh(x) {
+	return new this(x).acosh();
+}
+
+
+/*
+ * Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ * y {number|string|Decimal}
+ *
+ */
+function add(x, y) {
+	return new this(x).plus(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function asin(x) {
+	return new this(x).asin();
+}
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function asinh(x) {
+	return new this(x).asinh();
+}
+
+
+/*
+ * Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function atan(x) {
+	return new this(x).atan();
+}
+
+
+/*
+ * Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to
+ * `precision` significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function atanh(x) {
+	return new this(x).atanh();
+}
+
+
+/*
+ * Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi
+ * (inclusive), rounded to `precision` significant digits using rounding mode `rounding`.
+ *
+ * Domain: [-Infinity, Infinity]
+ * Range: [-pi, pi]
+ *
+ * y {number|string|Decimal} The y-coordinate.
+ * x {number|string|Decimal} The x-coordinate.
+ *
+ * atan2(±0, -0)               = ±pi
+ * atan2(±0, +0)               = ±0
+ * atan2(±0, -x)               = ±pi for x > 0
+ * atan2(±0, x)                = ±0 for x > 0
+ * atan2(-y, ±0)               = -pi/2 for y > 0
+ * atan2(y, ±0)                = pi/2 for y > 0
+ * atan2(±y, -Infinity)        = ±pi for finite y > 0
+ * atan2(±y, +Infinity)        = ±0 for finite y > 0
+ * atan2(±Infinity, x)         = ±pi/2 for finite x
+ * atan2(±Infinity, -Infinity) = ±3*pi/4
+ * atan2(±Infinity, +Infinity) = ±pi/4
+ * atan2(NaN, x) = NaN
+ * atan2(y, NaN) = NaN
+ *
+ */
+function atan2(y, x) {
+	y = new this(y);
+	x = new this(x);
+	var r,
+		pr = this.precision,
+		rm = this.rounding,
+		wpr = pr + 4;
+
+	// Either NaN
+	if (!y.s || !x.s) {
+		r = new this(NaN);
+
+		// Both ±Infinity
+	} else if (!y.d && !x.d) {
+		r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75);
+		r.s = y.s;
+
+		// x is ±Infinity or y is ±0
+	} else if (!x.d || y.isZero()) {
+		r = x.s < 0 ? getPi(this, pr, rm) : new this(0);
+		r.s = y.s;
+
+		// y is ±Infinity or x is ±0
+	} else if (!y.d || x.isZero()) {
+		r = getPi(this, wpr, 1).times(0.5);
+		r.s = y.s;
+
+		// Both non-zero and finite
+	} else if (x.s < 0) {
+		this.precision = wpr;
+		this.rounding = 1;
+		r = this.atan(divide(y, x, wpr, 1));
+		x = getPi(this, wpr, 1);
+		this.precision = pr;
+		this.rounding = rm;
+		r = y.s < 0 ? r.minus(x) : r.plus(x);
+	} else {
+		r = this.atan(divide(y, x, wpr, 1));
+	}
+
+	return r;
+}
+
+
+/*
+ * Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function cbrt(x) {
+	return new this(x).cbrt();
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEIL`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function ceil(x) {
+	return finalise(x = new this(x), x.e + 1, 2);
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` clamped to the range delineated by `min` and `max`.
+ *
+ * x {number|string|Decimal}
+ * min {number|string|Decimal}
+ * max {number|string|Decimal}
+ *
+ */
+function clamp(x, min, max) {
+	return new this(x).clamp(min, max);
+}
+
+
+/*
+ * Configure global settings for a Decimal constructor.
+ *
+ * `obj` is an object with one or more of the following properties,
+ *
+ *   precision  {number}
+ *   rounding   {number}
+ *   toExpNeg   {number}
+ *   toExpPos   {number}
+ *   maxE       {number}
+ *   minE       {number}
+ *   modulo     {number}
+ *   crypto     {boolean|number}
+ *   defaults   {true}
+ *
+ * E.g. Decimal.config({ precision: 20, rounding: 4 })
+ *
+ */
+function config(obj) {
+	if (!obj || typeof obj !== 'object') throw Error(decimalError + 'Object expected');
+	var i, p, v,
+		useDefaults = obj.defaults === true,
+		ps = [
+			'precision', 1, MAX_DIGITS,
+			'rounding', 0, 8,
+			'toExpNeg', -EXP_LIMIT, 0,
+			'toExpPos', 0, EXP_LIMIT,
+			'maxE', 0, EXP_LIMIT,
+			'minE', -EXP_LIMIT, 0,
+			'modulo', 0, 9
+		];
+
+	for (i = 0; i < ps.length; i += 3) {
+		if (p = ps[i], useDefaults) this[p] = DEFAULTS[p];
+		if ((v = obj[p]) !== void 0) {
+			if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;
+			else throw Error(invalidArgument + p + ': ' + v);
+		}
+	}
+
+	if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p];
+	if ((v = obj[p]) !== void 0) {
+		if (v === true || v === false || v === 0 || v === 1) {
+			if (v) {
+				if (typeof crypto != 'undefined' && crypto &&
+					(crypto.getRandomValues || crypto.randomBytes)) {
+					this[p] = true;
+				} else {
+					throw Error(cryptoUnavailable);
+				}
+			} else {
+				this[p] = false;
+			}
+		} else {
+			throw Error(invalidArgument + p + ': ' + v);
+		}
+	}
+
+	return this;
+}
+
+
+/*
+ * Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function cos(x) {
+	return new this(x).cos();
+}
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function cosh(x) {
+	return new this(x).cosh();
+}
+
+
+/*
+ * Create and return a Decimal constructor with the same configuration properties as this Decimal
+ * constructor.
+ *
+ */
+function clone(obj) {
+	var i, p, ps;
+
+	/*
+	 * The Decimal constructor and exported function.
+	 * Return a new Decimal instance.
+	 *
+	 * v {number|string|Decimal} A numeric value.
+	 *
+	 */
+	function Decimal(v) {
+		var e, i, t,
+			x = this;
+
+		// Decimal called without new.
+		if (!(x instanceof Decimal)) return new Decimal(v);
+
+		// Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor
+		// which points to Object.
+		x.constructor = Decimal;
+
+		// Duplicate.
+		if (isDecimalInstance(v)) {
+			x.s = v.s;
+
+			if (external) {
+				if (!v.d || v.e > Decimal.maxE) {
+
+					// Infinity.
+					x.e = NaN;
+					x.d = null;
+				} else if (v.e < Decimal.minE) {
+
+					// Zero.
+					x.e = 0;
+					x.d = [0];
+				} else {
+					x.e = v.e;
+					x.d = v.d.slice();
+				}
+			} else {
+				x.e = v.e;
+				x.d = v.d ? v.d.slice() : v.d;
+			}
+
+			return;
+		}
+
+		t = typeof v;
+
+		if (t === 'number') {
+			if (v === 0) {
+				x.s = 1 / v < 0 ? -1 : 1;
+				x.e = 0;
+				x.d = [0];
+				return;
+			}
+
+			if (v < 0) {
+				v = -v;
+				x.s = -1;
+			} else {
+				x.s = 1;
+			}
+
+			// Fast path for small integers.
+			if (v === ~~v && v < 1e7) {
+				for (e = 0, i = v; i >= 10; i /= 10) e++;
+
+				if (external) {
+					if (e > Decimal.maxE) {
+						x.e = NaN;
+						x.d = null;
+					} else if (e < Decimal.minE) {
+						x.e = 0;
+						x.d = [0];
+					} else {
+						x.e = e;
+						x.d = [v];
+					}
+				} else {
+					x.e = e;
+					x.d = [v];
+				}
+
+				return;
+
+				// Infinity, NaN.
+			} else if (v * 0 !== 0) {
+				if (!v) x.s = NaN;
+				x.e = NaN;
+				x.d = null;
+				return;
+			}
+
+			return parseDecimal(x, v.toString());
+
+		} else if (t !== 'string') {
+			throw Error(invalidArgument + v);
+		}
+
+		// Minus sign?
+		if ((i = v.charCodeAt(0)) === 45) {
+			v = v.slice(1);
+			x.s = -1;
+		} else {
+			// Plus sign?
+			if (i === 43) v = v.slice(1);
+			x.s = 1;
+		}
+
+		return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v);
+	}
+
+	Decimal.prototype = P;
+
+	Decimal.ROUND_UP = 0;
+	Decimal.ROUND_DOWN = 1;
+	Decimal.ROUND_CEIL = 2;
+	Decimal.ROUND_FLOOR = 3;
+	Decimal.ROUND_HALF_UP = 4;
+	Decimal.ROUND_HALF_DOWN = 5;
+	Decimal.ROUND_HALF_EVEN = 6;
+	Decimal.ROUND_HALF_CEIL = 7;
+	Decimal.ROUND_HALF_FLOOR = 8;
+	Decimal.EUCLID = 9;
+
+	Decimal.config = Decimal.set = config;
+	Decimal.clone = clone;
+	Decimal.isDecimal = isDecimalInstance;
+
+	Decimal.abs = abs;
+	Decimal.acos = acos;
+	Decimal.acosh = acosh; // ES6
+	Decimal.add = add;
+	Decimal.asin = asin;
+	Decimal.asinh = asinh; // ES6
+	Decimal.atan = atan;
+	Decimal.atanh = atanh; // ES6
+	Decimal.atan2 = atan2;
+	Decimal.cbrt = cbrt; // ES6
+	Decimal.ceil = ceil;
+	Decimal.clamp = clamp;
+	Decimal.cos = cos;
+	Decimal.cosh = cosh; // ES6
+	Decimal.div = div;
+	Decimal.exp = exp;
+	Decimal.floor = floor;
+	Decimal.hypot = hypot; // ES6
+	Decimal.ln = ln;
+	Decimal.log = log;
+	Decimal.log10 = log10; // ES6
+	Decimal.log2 = log2; // ES6
+	Decimal.max = max;
+	Decimal.min = min;
+	Decimal.mod = mod;
+	Decimal.mul = mul;
+	Decimal.pow = pow;
+	Decimal.random = random;
+	Decimal.round = round;
+	Decimal.sign = sign; // ES6
+	Decimal.sin = sin;
+	Decimal.sinh = sinh; // ES6
+	Decimal.sqrt = sqrt;
+	Decimal.sub = sub;
+	Decimal.sum = sum;
+	Decimal.tan = tan;
+	Decimal.tanh = tanh; // ES6
+	Decimal.trunc = trunc; // ES6
+
+	if (obj === void 0) obj = {};
+	if (obj) {
+		if (obj.defaults !== true) {
+			ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto'];
+			for (i = 0; i < ps.length;)
+				if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];
+		}
+	}
+
+	Decimal.config(obj);
+
+	return Decimal;
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ * y {number|string|Decimal}
+ *
+ */
+function div(x, y) {
+	return new this(x).div(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} The power to which to raise the base of the natural log.
+ *
+ */
+function exp(x) {
+	return new this(x).exp();
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function floor(x) {
+	return finalise(x = new this(x), x.e + 1, 3);
+}
+
+
+/*
+ * Return a new Decimal whose value is the square root of the sum of the squares of the arguments,
+ * rounded to `precision` significant digits using rounding mode `rounding`.
+ *
+ * hypot(a, b, ...) = sqrt(a^2 + b^2 + ...)
+ *
+ * arguments {number|string|Decimal}
+ *
+ */
+function hypot() {
+	var i, n,
+		t = new this(0);
+
+	external = false;
+
+	for (i = 0; i < arguments.length;) {
+		n = new this(arguments[i++]);
+		if (!n.d) {
+			if (n.s) {
+				external = true;
+				return new this(1 / 0);
+			}
+			t = n;
+		} else if (t.d) {
+			t = t.plus(n.times(n));
+		}
+	}
+
+	external = true;
+
+	return t.sqrt();
+}
+
+
+/*
+ * Return true if object is a Decimal instance (where Decimal is any Decimal constructor),
+ * otherwise return false.
+ *
+ */
+function isDecimalInstance(obj) {
+	return obj instanceof Decimal || obj && obj.toStringTag === tag || false;
+}
+
+
+/*
+ * Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function ln(x) {
+	return new this(x).ln();
+}
+
+
+/*
+ * Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base
+ * is specified, rounded to `precision` significant digits using rounding mode `rounding`.
+ *
+ * log[y](x)
+ *
+ * x {number|string|Decimal} The argument of the logarithm.
+ * y {number|string|Decimal} The base of the logarithm.
+ *
+ */
+function log(x, y) {
+	return new this(x).log(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function log2(x) {
+	return new this(x).log(2);
+}
+
+
+/*
+ * Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function log10(x) {
+	return new this(x).log(10);
+}
+
+
+/*
+ * Return a new Decimal whose value is the maximum of the arguments.
+ *
+ * arguments {number|string|Decimal}
+ *
+ */
+function max() {
+	return maxOrMin(this, arguments, 'lt');
+}
+
+
+/*
+ * Return a new Decimal whose value is the minimum of the arguments.
+ *
+ * arguments {number|string|Decimal}
+ *
+ */
+function min() {
+	return maxOrMin(this, arguments, 'gt');
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits
+ * using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ * y {number|string|Decimal}
+ *
+ */
+function mod(x, y) {
+	return new this(x).mod(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ * y {number|string|Decimal}
+ *
+ */
+function mul(x, y) {
+	return new this(x).mul(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} The base.
+ * y {number|string|Decimal} The exponent.
+ *
+ */
+function pow(x, y) {
+	return new this(x).pow(y);
+}
+
+
+/*
+ * Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with
+ * `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros
+ * are produced).
+ *
+ * [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive.
+ *
+ */
+function random(sd) {
+	var d, e, k, n,
+		i = 0,
+		r = new this(1),
+		rd = [];
+
+	if (sd === void 0) sd = this.precision;
+	else checkInt32(sd, 1, MAX_DIGITS);
+
+	k = Math.ceil(sd / LOG_BASE);
+
+	if (!this.crypto) {
+		for (; i < k;) rd[i++] = Math.random() * 1e7 | 0;
+
+		// Browsers supporting crypto.getRandomValues.
+	} else if (crypto.getRandomValues) {
+		d = crypto.getRandomValues(new Uint32Array(k));
+
+		for (; i < k;) {
+			n = d[i];
+
+			// 0 <= n < 4294967296
+			// Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865).
+			if (n >= 4.29e9) {
+				d[i] = crypto.getRandomValues(new Uint32Array(1))[0];
+			} else {
+
+				// 0 <= n <= 4289999999
+				// 0 <= (n % 1e7) <= 9999999
+				rd[i++] = n % 1e7;
+			}
+		}
+
+		// Node.js supporting crypto.randomBytes.
+	} else if (crypto.randomBytes) {
+
+		// buffer
+		d = crypto.randomBytes(k *= 4);
+
+		for (; i < k;) {
+
+			// 0 <= n < 2147483648
+			n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24);
+
+			// Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286).
+			if (n >= 2.14e9) {
+				crypto.randomBytes(4).copy(d, i);
+			} else {
+
+				// 0 <= n <= 2139999999
+				// 0 <= (n % 1e7) <= 9999999
+				rd.push(n % 1e7);
+				i += 4;
+			}
+		}
+
+		i = k / 4;
+	} else {
+		throw Error(cryptoUnavailable);
+	}
+
+	k = rd[--i];
+	sd %= LOG_BASE;
+
+	// Convert trailing digits to zeros according to sd.
+	if (k && sd) {
+		n = mathpow(10, LOG_BASE - sd);
+		rd[i] = (k / n | 0) * n;
+	}
+
+	// Remove trailing words which are zero.
+	for (; rd[i] === 0; i--) rd.pop();
+
+	// Zero?
+	if (i < 0) {
+		e = 0;
+		rd = [0];
+	} else {
+		e = -1;
+
+		// Remove leading words which are zero and adjust exponent accordingly.
+		for (; rd[0] === 0; e -= LOG_BASE) rd.shift();
+
+		// Count the digits of the first word of rd to determine leading zeros.
+		for (k = 1, n = rd[0]; n >= 10; n /= 10) k++;
+
+		// Adjust the exponent for leading zeros of the first word of rd.
+		if (k < LOG_BASE) e -= LOG_BASE - k;
+	}
+
+	r.e = e;
+	r.d = rd;
+
+	return r;
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`.
+ *
+ * To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEIL).
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function round(x) {
+	return finalise(x = new this(x), x.e + 1, this.rounding);
+}
+
+
+/*
+ * Return
+ *   1    if x > 0,
+ *  -1    if x < 0,
+ *   0    if x is 0,
+ *  -0    if x is -0,
+ *   NaN  otherwise
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function sign(x) {
+	x = new this(x);
+	return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN;
+}
+
+
+/*
+ * Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits
+ * using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function sin(x) {
+	return new this(x).sin();
+}
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function sinh(x) {
+	return new this(x).sinh();
+}
+
+
+/*
+ * Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function sqrt(x) {
+	return new this(x).sqrt();
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits
+ * using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal}
+ * y {number|string|Decimal}
+ *
+ */
+function sub(x, y) {
+	return new this(x).sub(y);
+}
+
+
+/*
+ * Return a new Decimal whose value is the sum of the arguments, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * Only the result is rounded, not the intermediate calculations.
+ *
+ * arguments {number|string|Decimal}
+ *
+ */
+function sum() {
+	var i = 0,
+		args = arguments,
+		x = new this(args[i]);
+
+	external = false;
+	for (; x.s && ++i < args.length;) x = x.plus(args[i]);
+	external = true;
+
+	return finalise(x, this.precision, this.rounding);
+}
+
+
+/*
+ * Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant
+ * digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function tan(x) {
+	return new this(x).tan();
+}
+
+
+/*
+ * Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision`
+ * significant digits using rounding mode `rounding`.
+ *
+ * x {number|string|Decimal} A value in radians.
+ *
+ */
+function tanh(x) {
+	return new this(x).tanh();
+}
+
+
+/*
+ * Return a new Decimal whose value is `x` truncated to an integer.
+ *
+ * x {number|string|Decimal}
+ *
+ */
+function trunc(x) {
+	return finalise(x = new this(x), x.e + 1, 1);
+}
+
+
+// Create and configure initial Decimal constructor.
+Decimal = clone(DEFAULTS);
+Decimal.prototype.constructor = Decimal;
+Decimal['default'] = Decimal.Decimal = Decimal;
+
+// Create the internal constants from their string values.
+LN10 = new Decimal(LN10);
+PI = new Decimal(PI);
+
+export default Decimal

+ 15 - 0
utils/ext.js

@@ -0,0 +1,15 @@
+/**
+ * 获取ext配置
+ * @param {string} type - 配置key
+ * @returns {string} 配置数据值
+ */
+function getExtStoreId(type){
+  try{
+    const extConfig = uni.getExtConfigSync ? uni.getExtConfigSync() : {}
+    return extConfig[type];
+  }catch(err){
+    console.log(err,'getExtStoreId__error')
+  }
+}
+
+export default { getExtStoreId };

+ 114 - 0
utils/request.js

@@ -0,0 +1,114 @@
+import ext from "./ext.js";
+// 请求域名
+var domain = 'https://openwork.dfwy.tech/'
+//var domain = 'http://saas.com/'
+// #ifdef MP-WEIXIN
+// 'http://127.0.0.1:8000/';
+// domain = uni.getAccountInfoSync().miniProgram.envVersion == 'release' ? 'https://openwork.dfwy.tech/' : 'https://openwork.dfwy.tech/';
+domain = uni.getAccountInfoSync().miniProgram.envVersion == 'release' ? ext.getExtStoreId('release_host_url') : ext.getExtStoreId('host_url');
+var app_id = ext.getExtStoreId('app_id') ? ext.getExtStoreId('app_id') : '';
+// #endif
+
+// 发送网络请求的函数
+const request = (url, data = {}, method = 'GET') => {
+	// 获取登录标识
+	let userLogin = uni.getStorageSync('userLogin');
+	let shopId 	  = uni.getStorageSync("shopId");
+	// 合并参数
+	if( userLogin && userLogin.authcode ) data = Object.assign({authcode:userLogin.authcode},data);
+	if (shopId)	  data = Object.assign({shop_id:shopId},data);
+	if (app_id)	  data = Object.assign({app_id:app_id},data);
+	// 封装
+	return new Promise((resolve, reject) => {
+		uni.request({
+			url: domain+url,
+			method: method,
+			data: data,
+			success: (res) => {
+				// 登录提示
+				if(res.data.code == 'no_login'){
+					// 清空登录标识
+					uni.setStorageSync('userLogin',null);
+					// 清空用户信息
+					uni.setStorageSync('userInfo',null);
+					// 前去登录
+					uni.showModal({
+						title:"请登录",
+						success(res){
+							if (res.confirm) {
+								// 用户点击确定按钮
+								uni.navigateTo({
+									url:"/pages/login/index"
+								})
+							}
+						}
+					})
+				}
+				// 返回结果
+				resolve(res.data)
+			},
+			fail: (err) => {
+				reject(err)
+			}
+		})
+	})
+}
+
+const fileupload = (url, filePath,data = {}) =>{
+	// 获取登录标识
+	let userLogin = uni.getStorageSync('userLogin');
+	// 合并参数
+	if( userLogin && userLogin.authcode ) data = Object.assign({authcode:userLogin.authcode},data);
+	if (app_id)	  data = Object.assign({app_id:app_id},data);
+	// 封装
+	return new Promise((resolve, reject) => {
+		uni.uploadFile({
+			url: domain+url, // 你的上传接口地址
+			filePath: filePath,
+			name: 'file', // 必须填写,为了后端接收文件流的参数名字
+			formData: data,// 其他要上传的参数
+			success: (res) => {
+				// 登录提示
+				if(res.data.code == 'no_login'){
+					// 前去登录
+					uni.showModal({
+						title:"请登录",
+						success(res){
+							if (res.confirm) {
+								// 用户点击确定按钮
+								uni.navigateTo({
+									url:"/pages/login/index"
+								})
+							}
+						}
+					})
+				}
+				// 转json,php返回可能会带bom头需要先替换
+				let resdata = JSON.parse(res.data.replace('\uFEFF',''));
+				resolve(resdata)
+			},
+			fail: (err) => {
+				reject(err)
+			}
+		});
+	})
+}
+
+// 字符串键值对转参数对象
+const strToParam = (str, separator = '&')=> {
+	// 先转码
+	str			= decodeURIComponent(str);
+	let pairs 	= str.split(separator);
+	let result 	= {};
+	pairs.forEach(pair => {
+		let [key, value] = pair.split('=');
+		result[key] = value;
+	});
+	// 返回结果
+	return result;
+}
+
+// 模块导出,{name:object} 为对象式,导出多个使用
+// export default {request:request,request1:request1};
+// 单个对象,直接导出如下
+export default {request:request,fileupload:fileupload,strToParam:strToParam}